Hamilton}Jacobi}Bellman framework for optimal control in multistage energy systems

Abstract We enunciate parallelism for structures of variational principles in mechanics and thermodynamics in terms of the duality for thermoeconomic problems of maximizing of production profit and net profit which can be transferred to duality for least action and least abbreviated action which appear in mechanics. With the parallelism in mind, we review theory and macroscopic applications of a recently developed discrete formalism of Hamilton–Jacobi type which arises when Bellman's method of dynamic programming is applied to optimize active (work producing) and inactive (entropy generating) multistage energy systems with free intervals of an independent variable. Our original contribution develops a generalized theory for discrete processes in which these intervals can reside in the model inhomogeneously and can be constrained. We consider applications to multistage thermal machines, controlled unit operations, spontaneous relaxations, nonlinear heat conduction, and self-propagating reaction–diffusion fronts. They all satisfy a basic functional equation that leads to the Hamilton–Jacobi–Bellman equation (HJB equation) and a related discrete optimization algorithm with a maximum principle for a Hamiltonian. Correspondence is shown with the well-known HJB theory for continuous processes when the number of stages approaches an infinity. We show that a common unifying criterion, which is the criterion of a minimum generated entropy, can be proven to act locally in the majority of considered cases, although the related global statements can be invalid far from equilibrium. General limits are found which bound the consumption of the classical work potential (exergy) for finite durations.

[1]  S. Sieniutycz,et al.  Discrete Hamiltonian Analysis of Endoreversible Thermal Cascades , 2000 .

[2]  G. Leitmann,et al.  Mathematical Methods of Optimal Control , 1971 .

[3]  Kenneth Showalter,et al.  A modified Oregonator model exhibiting complicated limit cycle behavior in a flow system , 1978 .

[4]  A. Lázár,et al.  Refraction of chemical waves propagating in modified membranes , 1996 .

[5]  K. Showalter,et al.  The influence of the form of autocatalysis on the speed of chemical waves , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[6]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  J. Keizer Variational principles in nonequilibrium thermodynamics. , 1977, Bio Systems.

[8]  G. Leitmann An Introduction To Optimal Control , 1966 .

[9]  J. Marsden Lectures on Mechanics , 1992 .

[10]  K. B. Haley,et al.  The Continuous Maximum Principle , 1967 .

[11]  A. Winfree Spiral Waves of Chemical Activity , 1972, Science.

[12]  Stephen K. Scott,et al.  Oscillations, waves, and chaos in chemical kinetics , 1994 .

[13]  Lars Onsager,et al.  Fluctuations and Irreversible Processes , 1953 .

[14]  A. Zhabotinsky,et al.  Concentration Wave Propagation in Two-dimensional Liquid-phase Self-oscillating System , 1970, Nature.

[15]  J. S. Nicolis,et al.  Non-Uniform Chaotic Dynamics with Implications to Information Processing , 1983 .

[16]  Stanislaw Sieniutycz,et al.  Carnot problem of maximum work from a finite resource interacting with environment in a finite time , 1999 .

[17]  R. J. Field,et al.  A novel model for the simulation of chaos in low-flow-rate CSTR experiments with the Belousov-Zhabotinskii reaction: a chemical mechanism for two-frequency oscillations , 1991 .

[18]  L. Holland,et al.  Tangent law of refraction for heat conduction through an interface and underlying variational principle , 1990 .

[19]  R. J. Field,et al.  Aperiodicity resulting from external and internal two-cycle coupling in the Belousov-Zhabotinskii reaction , 1988 .

[20]  Gérard A. Maugin,et al.  Electrodynamics Of Continua , 1990 .

[21]  K. Showalter,et al.  Instabilities in propagating reaction-diffusion fronts , 1993 .

[22]  Vladimir Hlavacek,et al.  REACTION FRONT PROPAGATION CHARACTERISTICS IN NON-CATALYTIC EXOTHERMIC GAS-SOLID SYSTEMS , 1990 .

[23]  The role of curvature and wavefront interactions in spiral-wave dynamics , 1991 .

[24]  K. Eriksson,et al.  Structure, Context, Complexity, Organization: Physical Aspects of Information and Value , 1987 .

[25]  V. G Boltyanskii,et al.  Optimal Control of Discrete Systems , 1979 .

[26]  A. Merzhanov,et al.  Physics of reaction waves , 1999 .

[27]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[28]  Arthur T. Winfree,et al.  Rotating Chemical Reactions , 1974 .

[29]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[30]  The thermodynamic approach to fluidized drying and moistening optimization , 1973 .

[31]  B. Andresen,et al.  Minimum entropy production and the optimization of heat engines , 1980 .

[32]  H. Swinney,et al.  Sustained chemical waves in an annular gel reactor: a chemical pinwheel , 1987, Nature.

[33]  A. Winfree,et al.  Scroll-Shaped Waves of Chemical Activity in Three Dimensions , 1973, Science.

[34]  P. Simon,et al.  Geometric theory of trigger waves — A dynamical system approach , 1996 .

[35]  H. Goldstein,et al.  Classical Mechanics , 1951, Mathematical Gazette.

[36]  Berry,et al.  Conservation laws from Hamilton's principle for nonlocal thermodynamic equilibrium fluids with heat flow. , 1989, Physical review. A, General physics.

[37]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[38]  R. Stephen Berry,et al.  Finite‐time thermodynamics: Exergy and optimization of time‐constrained processes , 1994 .

[39]  Tadeusz Styś,et al.  A discrete maximum principle , 1981 .

[40]  S. Sieniutycz Optimal Control Framework for Multistage Endoreversible Engines with Heat and Mass Transfer , 1999 .

[41]  S. Sieniutycz,et al.  A non-equilibrium internal exchange of energy andmatter and its Onsagers-type variational theory of relaxation , 1999 .

[42]  S. Sieniutycz,et al.  Thermal Mass and Thermal Inertia in Fluids — A Comparison of Hypotheses , 1997 .

[43]  S. Sieniutycz,et al.  Chemical waves in confined regions by Hamilton-Jacobi-Bellman theory , 1997 .

[44]  S. Sieniutycz Variational thermomechanical processes and chemical reactions in distributed systems , 1997 .

[45]  Stanislaw Sieniutycz,et al.  Nonlinear thermokinetics of maximum work in finite time , 1998 .

[46]  R. Bellman Dynamic programming. , 1957, Science.

[47]  R. McLachlan,et al.  Explicit Lie-Poisson integration and the Euler equations. , 1993, Physical review letters.

[48]  R. M. Noyes Reactions with directed motion , 1987, Nature.

[49]  B. Andresen,et al.  Thermodynamics in finite time: extremals for imperfect heat engines , 1977 .

[50]  Bjarne Andresen,et al.  Optimal heating and cooling strategies for heat exchanger design , 1992 .

[51]  D. Blackwell Discrete Dynamic Programming , 1962 .

[52]  Generating functions for dynamical systems with symmetries, integrals, and differential invariants , 1998 .

[53]  Jan Degrève,et al.  Modeling of exothermic solid-solid noncatalytic reactions , 1987 .

[54]  A ROSENBLUETH,et al.  The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. , 1946, Archivos del Instituto de Cardiologia de Mexico.

[55]  Chemical waves in a continuously fed reactor: Numerical studies of the chemical pinwheel , 1991 .

[56]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[57]  Bjarne Andresen,et al.  Maximum work from a finite reservoir by sequential Carnot cycles , 1981 .

[58]  J. Keener A geometrical theory for spiral waves in excitable media , 1986 .

[59]  A. D. Vos,et al.  Endoreversible thermodynamics of solar energy conversion , 1992 .

[60]  Zoltán Noszticzius,et al.  Chemical waves in modified membranes I: developing the technique , 1995 .

[61]  Stanislaw Sieniutycz,et al.  Dynamic programming approach to a Fermat type principle for heat flow , 2000 .

[62]  J. Keener,et al.  Singular perturbation theory of traveling waves in excitable media (a review) , 1988 .

[63]  Otto E. Rössler,et al.  Irregular Oscillations in a Realistic Abstract Quadratic Mass Action System , 1980 .

[64]  G.R.W. Wuispel,et al.  Volume-preserving integrators , 1995 .

[65]  Hanno Rund,et al.  The Hamilton-Jacobi theory in the calculus of variations : its role in mathematics and physics , 1967 .

[66]  Bjarne Andresen,et al.  Availability for finite-time processes. General theory and a model , 1983 .

[67]  R. J. Field,et al.  Oscillations and Traveling Waves in Chemical Systems , 1985 .

[68]  A. Lázár,et al.  Involutes: the geometry of chemical waves rotating in annular membranes. , 1995, Chaos.

[69]  G. R. W. Quispel,et al.  Volume-preserving integrators have linear error growth , 1998 .

[70]  Stanislaw Sieniutycz,et al.  Hamilton-Jacobi-Bellman theory of dissipative thermal availability , 1997 .

[71]  Stanislaw Sieniutycz,et al.  From a least action principle to mass action law and extended affinity , 1987 .

[72]  R. Thom Stabilité structurelle et morphogenèse , 1974 .

[73]  Jan A. Puszynski,et al.  On the Dynamics of Equations Describing Gasless Combustion in Condensed Systems , 1989 .

[74]  Stuart E. Dreyfus,et al.  Applied Dynamic Programming , 1965 .

[75]  Stanislaw Sieniutycz,et al.  Thermodynamics of energy conversion and transport , 2000 .