Exact solutions of the Swift–Hohenberg equation with dispersion

Abstract The Swift–Hohenberg equation with dispersion is considered. Traveling wave solutions of the Swift–Hohenberg equation with dispersion are presented. The classification of these solutions is given. It is shown that the Swift–Hohenberg equation without dispersion has only stationary meromorphic solution.

[1]  E. Fan,et al.  Extended tanh-function method and its applications to nonlinear equations , 2000 .

[2]  Nikolai A. Kudryashov,et al.  Seven common errors in finding exact solutions of nonlinear differential equations , 2009, 1011.4268.

[3]  J. Swift,et al.  Hydrodynamic fluctuations at the convective instability , 1977 .

[4]  Nikolay K. Vitanov,et al.  Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity , 2010 .

[5]  Zuntao Fu,et al.  New transformations and new approach to find exact solutions to nonlinear equations , 2002 .

[6]  Anjan Biswas,et al.  Solitary wave solution for the generalized Kawahara equation , 2009, Appl. Math. Lett..

[7]  E. Knobloch,et al.  Swift-Hohenberg equation with broken reflection symmetry. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[9]  Nikolai A. Kudryashov,et al.  Extended simplest equation method for nonlinear differential equations , 2008, Appl. Math. Comput..

[10]  Nikolai A. Kudryashov,et al.  Exact solutions of the generalized Kuramoto-Sivashinsky equation , 1990 .

[11]  N. Kudryashov,et al.  EXACT SOLITON SOLUTIONS OF THE GENERALIZED EVOLUTION EQUATION OF WAVE DYNAMICS , 1988 .

[12]  N. A. Kudryashov Simplest equation method to look for exact solutions of nonlinear differential equations , 2005 .

[13]  Paul Abbott,et al.  The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations , 2002 .

[14]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[15]  Nikolai A. Kudryashov,et al.  Exact solutions of the generalized Bretherton equation , 2011, 1112.5439.

[16]  I. Aranson,et al.  Stable particle-like solutions of multidimensional nonlinear fields , 1990 .

[17]  Y. Pomeau,et al.  Dislocation motion in cellular structures , 1983 .

[18]  Nikolai A. Kudryashov,et al.  Meromorphic solutions of nonlinear ordinary differential equations , 2010, 1201.0126.

[19]  B. Duffy,et al.  An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations , 1996 .

[20]  Nikolay A. Kudryashov,et al.  From Laurent series to exact meromorphic solutions: The Kawahara equation , 2010, 1112.5266.

[21]  N. A. Kudryashov,et al.  Partial differential equations with solutions having movable first-order singularities , 1992 .

[22]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[23]  L. Glebsky,et al.  On small stationary localized solutions for the generalized 1-D Swift-Hohenberg equation. , 1995, Chaos.

[24]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[25]  N. Kudryashov,et al.  Exact solutions of the non-linear wave equations arising in mechanics☆ , 1990 .

[26]  S. Vernov Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg-Landau Equation , 2006 .

[27]  Nikolay A. Kudryashov,et al.  Explicit expressions for meromorphic solutions of autonomous nonlinear ordinary differential equations , 2011, 1112.5445.