Instaseis: instant global seismograms based on a broadband waveform database

Abstract. We present a new method and implementation (Instaseis) to store global Green's functions in a database which allows for near-instantaneous (on the order of milliseconds) extraction of arbitrary seismograms. Using the axisymmetric spectral element method (AxiSEM), the generation of these databases, based on reciprocity of the Green's functions, is very efficient and is approximately half as expensive as a single AxiSEM forward run. Thus, this enables the computation of full databases at half the cost of the computation of seismograms for a single source in the previous scheme and allows to compute databases at the highest frequencies globally observed. By storing the basis coefficients of the numerical scheme (Lagrange polynomials), the Green's functions are 4th order accurate in space and the spatial discretization respects discontinuities in the velocity model exactly. High-order temporal interpolation using Lanczos resampling allows to retrieve seismograms at any sampling rate. AxiSEM is easily adaptable to arbitrary spherically symmetric models of Earth as well as other planets. In this paper, we present the basic rationale and details of the method as well as benchmarks and illustrate a variety of applications. The code is open source and available with extensive documentation at www.instaseis.net .

[1]  K. Sigloch,et al.  Multifrequency measurements of core-diffracted P waves (Pdiff) for global waveform tomography , 2015 .

[2]  T. Nissen‐Meyer,et al.  Seismic wave propagation in fully anisotropic axisymmetric media , 2014 .

[3]  Martin van Driel,et al.  Optimized viscoelastic wave propagation for weakly dissipative media , 2014 .

[4]  T. Nissen‐Meyer,et al.  Seismic waveform inversion for core–mantle boundary topography , 2014 .

[5]  Simon C. Stähler,et al.  AxiSEM: broadband 3-D seismic wavefields in axisymmetric media , 2014 .

[6]  T. Nissen‐Meyer,et al.  Savani: A variable resolution whole‐mantle model of anisotropic shear velocity variations based on multiple data sets , 2014 .

[7]  J. Bidlot,et al.  User manual and system documentation of WAVEWATCH III R version 4.18 , 2014 .

[8]  B. Romanowicz,et al.  On the numerical implementation of time-reversal mirrors for tomographic imaging , 2013, Geophysical Journal International.

[9]  Matthew J. Turk,et al.  Seismic Sound Lab: Sights, Sounds and Perception of the Earth as an Acoustic Space , 2013, CMMR.

[10]  Simon Stähler,et al.  Fully probabilistic seismic source inversion - Part 1: Efficient parameterisation , 2013 .

[11]  Karin Sigloch,et al.  ObsPyLoad: A Tool for Fully Automated Retrieval of Seismological Waveform Data , 2013 .

[12]  T. Nissen‐Meyer,et al.  The influence of nonuniform ambient noise on crustal tomography in Europe , 2013 .

[13]  F. Ardhuin,et al.  Modelling secondary microseismic noise by normal mode summation , 2013 .

[14]  Wilhelm Burger,et al.  Principles of Digital Image Processing , 2013, Undergraduate Topics in Computer Science.

[15]  Dimitri Komatitsch,et al.  A hybrid method to compute short-period synthetic seismograms of teleseismic body waves in a 3-D regional model , 2013 .

[16]  T. Nissen‐Meyer,et al.  Triplicated P-wave measurements for waveform tomography of the mantle transition zone , 2012 .

[17]  Lion Krischer,et al.  ObsPy – What can it do for data centers and observatories? , 2011 .

[18]  Paul Friberg,et al.  Near real‐time simulations of global CMT earthquakes , 2010 .

[19]  Lion Krischer,et al.  ObsPy: A Python Toolbox for Seismology , 2010 .

[20]  A. Valentine,et al.  Reducing errors in seismic tomography: combined inversion for sources and structure , 2010 .

[21]  Michel Campillo,et al.  Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations , 2009 .

[22]  V. Tsai On establishing the accuracy of noise tomography travel‐time measurements in a realistic medium , 2009 .

[23]  Peter Moczo,et al.  Time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signals , 2009 .

[24]  Wilhelm Burger,et al.  Principles of Digital Image Processing - Core Algorithms , 2009, Undergraduate Topics in Computer Science.

[25]  J. Woodhouse,et al.  Calculation of seismic displacement fields in self-gravitating earth models—applications of minors vectors and symplectic structure , 2008 .

[26]  Guust Nolet,et al.  A Breviary of Seismic Tomography: Imaging the Interior of the Earth and Sun , 2008 .

[27]  Alexandre Fournier,et al.  A 2‐D spectral‐element method for computing spherical‐earth seismograms—II. Waves in solid–fluid media , 2008 .

[28]  K. Obara,et al.  Background Love and Rayleigh waves simultaneously generated at the Pacific Ocean floors , 2008 .

[29]  Francisco J. Sánchez-Sesma,et al.  Cross‐correlation of random fields: mathematical approach and applications , 2008 .

[30]  G. Nolet A Breviary of Seismic Tomography: Frontmatter , 2008 .

[31]  J. Tromp Theory and Obeservations - Forward Modeling and Synthetic Seismograms, 3D Numerical Methods , 2007 .

[32]  Alexandre Fournier,et al.  A two‐dimensional spectral‐element method for computing spherical‐earth seismograms – I. Moment‐tensor source , 2007 .

[33]  Alexandre Fournier,et al.  Spherical‐earth Fréchet sensitivity kernels , 2007 .

[34]  J. Connolly,et al.  Constraining the Composition and Thermal State of Mars , 2007 .

[35]  Michel Campillo,et al.  A study of the seismic noise from its long-range correlation properties , 2006 .

[36]  G. Nolet,et al.  Measuring finite‐frequency body‐wave amplitudes and traveltimes , 2006 .

[37]  Francisco J. Sánchez-Sesma,et al.  Retrieval of the Green’s Function from Cross Correlation: The Canonical Elastic Problem , 2006 .

[38]  Kenji Kawai,et al.  Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media , 2006 .

[39]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation: II. Three-dimensional models, oceans, rotation and self-gravitation , 2002 .

[40]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[41]  B. Romanowicz,et al.  The COSY Project: verification of global seismic modeling algorithms , 2000 .

[42]  Thomas J. Owens,et al.  The TauP Toolkit: Flexible Seismic Travel-Time and Raypath Utilities , 1999 .

[43]  P. Shearer,et al.  Global Stacking of Broadband Seismograms , 1996 .

[44]  B. Kennett,et al.  How to reconcile body-wave and normal-mode reference earth models , 1996 .

[45]  Wolfgang Friederich,et al.  COMPLETE SYNTHETIC SEISMOGRAMS FOR A SPHERICALLY SYMMETRIC EARTH BY A NUMERICAL COMPUTATION OF THE GREEN'S FUNCTION IN THE FREQUENCY DOMAIN , 1995 .

[46]  Robert J. Geller,et al.  Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the Direct Solution Method , 1994 .

[47]  Chongyu Hua,et al.  An inverse transformation for quadrilateral isoparametric elements: Analysis and application , 1990 .

[48]  Russ Rew,et al.  NetCDF: an interface for scientific data access , 1990, IEEE Computer Graphics and Applications.

[49]  Masayuki Kikuchi,et al.  Inversion of complex body waves-II , 1986 .

[50]  Masayuki Kikuchi,et al.  Inversion of complex body waves , 1982 .

[51]  C. H. Chapman,et al.  A new method for computing synthetic seismograms , 1978 .

[52]  K. Fuchs,et al.  Computation of Synthetic Seismograms with the Reflectivity Method and Comparison with Observations , 1971 .

[53]  H. Nyquist,et al.  Certain Topics in Telegraph Transmission Theory , 1928, Transactions of the American Institute of Electrical Engineers.