On the manipulability of the fuzzy social choice functions

In many social decision-making contexts, a manipulator has incentives to change the social choice in his favor by strategically misrepresenting his preference. Gibbard [Manipulation of voting schemes: a general result, Econometrica 41(4) (1973) 587-601] and Satterthwaite [Strategy-proofness and Arrow's conditions: existence and correspondence theorems for voting procedures and social welfare functions. J. Econom. Theory 10 (1975) 187-217] have shown that any non-dictatorial voting choice procedure is vulnerable to strategic manipulation. This paper extends their result to the case of fuzzy weak preference relations. For this purpose, the best alternative set is defined in three ways and consequently three generalizations of the Gibbard-Satterthwaite theorem to the fuzzy context are provided.

[1]  Bernard De Baets,et al.  Additive decomposition of fuzzy pre-orders , 2007, Fuzzy Sets Syst..

[2]  M. Roubens Some properties of choice functions based on valued binary relations , 1989 .

[3]  M. Satterthwaite Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .

[4]  Salvador Barberà,et al.  An introduction to strategy-proof social choice functions , 2001, Soc. Choice Welf..

[5]  Bonifacio Llamazares,et al.  Aggregation of fuzzy preferences: Some rules of the mean , 2000, Soc. Choice Welf..

[6]  B. Peleg Game Theoretic Analysis of Voting in Committees , 1984 .

[7]  Bernard De Baets,et al.  Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum , 2004, Kybernetika.

[8]  C. R. Barrett,et al.  On choosing rationally when preferences are fuzzy , 1990 .

[9]  B. Shekar,et al.  Interrelationships among fuzzy preference-based choice functions and significance of rationality conditions: A taxonomic and intuitive perspective , 2000, Fuzzy Sets Syst..

[10]  Lotfi A. Zadeh,et al.  Quantitative fuzzy semantics , 1971, Inf. Sci..

[11]  C. R. Barrett,et al.  On the structure of fuzzy social welfare functions , 1986 .

[12]  R. Deb,et al.  Transitivity and fuzzy preferences , 1996 .

[13]  Fang-Fang Tang,et al.  Fuzzy Preferences and Social Choice , 1994 .

[14]  A. Gibbard Manipulation of Voting Schemes: A General Result , 1973 .

[15]  Kunal Sengupta Choice rules with fuzzy preferences: Some characterizations , 1999 .

[16]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[17]  Kunal Sengupta,et al.  Fuzzy preference and Orlovsky choice procedure , 1998, Fuzzy Sets Syst..

[18]  P. Pattanaik,et al.  Exact choice and fuzzy preferences , 1986 .

[19]  Bhaskan Dutta,et al.  Fuzzy preferences and social choice , 1987 .

[20]  Bernard De Baets,et al.  Transitivity Bounds in Additive Fuzzy Preference Structures , 2007, IEEE Transactions on Fuzzy Systems.

[21]  S. Geslin Contributions à l'analyse de l'agrégation des préférences floues sur des domaines économiques , 2003 .