Leading RNA Interference Therapeutics Part 1: Silencing Hereditary Transthyretin Amyloidosis, with a Focus on Patisiran

[1]  M. Slama,et al.  Hereditary transthyretin amyloidosis: a model of medical progress for a fatal disease , 2019, Nature Reviews Neurology.

[2]  Giampaolo Merlini,et al.  Association of Patisiran, an RNA Interference Therapeutic, With Regional Left Ventricular Myocardial Strain in Hereditary Transthyretin Amyloidosis: The APOLLO Study. , 2019, JAMA cardiology.

[3]  D. Adams,et al.  Phase 1 study of ALN-TTRsc02, a subcutaneously administered investigational RNAi therapeutic for the treatment of transthyretin-mediated amyloidosis , 2019, Revue Neurologique.

[4]  M. Reilly,et al.  Clinical Presentation, Diagnosis and Treatment of TTR Amyloidosis , 2019, Journal of neuromuscular diseases.

[5]  S. Ajroud‐Driss,et al.  Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. , 2019, Neurodegenerative disease management.

[6]  M. Benson,et al.  Inotersen (transthyretin-specific antisense oligonucleotide) for treatment of transthyretin amyloidosis. , 2019, Neurodegenerative disease management.

[7]  C. I. Smith,et al.  Therapeutic Oligonucleotides: State of the Art. , 2019, Annual review of pharmacology and toxicology.

[8]  K. Lasser,et al.  The Effectiveness and Value of Patisiran and Inotersen for Hereditary Transthyretin Amyloidosis. , 2019, Journal of managed care & specialty pharmacy.

[9]  J. Gollob,et al.  An indirect treatment comparison of the efficacy of patisiran and tafamidis for the treatment of hereditary transthyretin-mediated amyloidosis with polyneuropathy , 2018, Expert opinion on pharmacotherapy.

[10]  M. de Carvalho,et al.  Natural history and survival in stage 1 Val30Met transthyretin familial amyloid polyneuropathy , 2018, Neurology.

[11]  Sanjiv J. Shah,et al.  Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy , 2018, The New England journal of medicine.

[12]  Heidi Ledford Gene-silencing technology gets first drug approval after 20-year wait , 2018, Nature.

[13]  S. Solomon,et al.  Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis , 2018, The New England journal of medicine.

[14]  C. Soto-Sánchez,et al.  Delivery of miRNA-Targeted Oligonucleotides in the Rat Striatum by Magnetofection with Neuromag® , 2018, Molecules.

[15]  S. Solomon,et al.  Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis , 2018, The New England journal of medicine.

[16]  P. Cullis,et al.  Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility. , 2018, Nucleic acid therapeutics.

[17]  V. Planté-Bordeneuve,et al.  Transthyretin familial amyloid polyneuropathy: an update , 2018, Journal of Neurology.

[18]  P. Cullis,et al.  Lipid Nanoparticle Systems for Enabling Gene Therapies. , 2017, Molecular therapy : the journal of the American Society of Gene Therapy.

[19]  D. Judge,et al.  Long-term safety and efficacy of tafamidis for the treatment of hereditary transthyretin amyloid polyneuropathy: results up to 6 years , 2017, Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis.

[20]  J. Gollob,et al.  PHASE 2 OPEN-LABEL EXTENSION (OLE) STUDY OF PATISIRAN, AN INVESTIGATIONAL RNA INTERFERENCE (RNAI) THERAPEUTIC FOR THE TREATMENT OF HEREDITARY ATTR AMYLOIDOSIS WITH POLYNEUROPATHY , 2017 .

[21]  R. Titze-de-Almeida,et al.  The Race of 10 Synthetic RNAi-Based Drugs to the Pharmaceutical Market , 2017, Pharmaceutical Research.

[22]  A. Iyer,et al.  siRNA Delivery Strategies: A Comprehensive Review of Recent Developments , 2017, Nanomaterials.

[23]  anastasia. khvorova,et al.  The chemical evolution of oligonucleotide therapies of clinical utility , 2017, Nature Biotechnology.

[24]  J. Lefaucheur,et al.  Long-term treatment of transthyretin familial amyloid polyneuropathy with tafamidis: a clinical and neurophysiological study , 2017, Journal of Neurology.

[25]  B. Bettencourt,et al.  Clinical Proof of Concept for a Novel Hepatocyte-Targeting GalNAc-siRNA Conjugate. , 2017, Molecular therapy : the journal of the American Society of Gene Therapy.

[26]  R. Darcy,et al.  Oligonucleotide conjugates - Candidates for gene silencing therapeutics. , 2016, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[27]  Kwangmeyung Kim,et al.  Chemical and structural modifications of RNAi therapeutics. , 2016, Advanced drug delivery reviews.

[28]  B. Hazenberg,et al.  First European consensus for diagnosis, management, and treatment of transthyretin familial amyloid polyneuropathy , 2016, Current opinion in neurology.

[29]  M. Benson,et al.  Diagnosis, Prognosis, and Therapy of Transthyretin Amyloidosis. , 2015, Journal of the American College of Cardiology.

[30]  P. Hawkins,et al.  Evolving landscape in the management of transthyretin amyloidosis , 2015, Annals of medicine.

[31]  B. Bettencourt,et al.  Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study , 2015, Orphanet Journal of Rare Diseases.

[32]  M. Greicius,et al.  Neuropathologic analysis of Tyr69His TTR variant meningovascular amyloidosis with dementia , 2015, Acta neuropathologica communications.

[33]  J. Beirão,et al.  Ophthalmological manifestations in hereditary transthyretin (ATTR V30M) carriers: a review of 513 cases , 2015, Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis.

[34]  Amy Chan,et al.  Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. , 2014, Journal of the American Chemical Society.

[35]  T. Coelho,et al.  CNS involvement in V30M transthyretin amyloidosis: clinical, neuropathological and biochemical findings , 2014, Journal of Neurology, Neurosurgery & Psychiatry.

[36]  P. Svoboda Renaissance of mammalian endogenous RNAi , 2014, FEBS letters.

[37]  Yong Ren,et al.  Recent advances in nanoparticle-mediated siRNA delivery. , 2014, Annual review of biomedical engineering.

[38]  Y. Sekijima Recent progress in the understanding and treatment of transthyretin amyloidosis , 2014, Journal of clinical pharmacy and therapeutics.

[39]  E. Nordh,et al.  Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. , 2013, JAMA.

[40]  Y. Kopelman,et al.  Mutant KRAS is a druggable target for pancreatic cancer , 2013, Proceedings of the National Academy of Sciences.

[41]  Daniel Anderson,et al.  Delivery materials for siRNA therapeutics. , 2013, Nature materials.

[42]  B. Bettencourt,et al.  Safety and efficacy of RNAi therapy for transthyretin amyloidosis. , 2013, The New England journal of medicine.

[43]  J. Doudna,et al.  Molecular mechanisms of RNA interference. , 2013, Annual review of biophysics.

[44]  R. Labaudinière,et al.  Tafamidis for transthyretin familial amyloid polyneuropathy , 2012, Neurology.

[45]  R. Ketting The many faces of RNAi. , 2011, Developmental cell.

[46]  R. Langer,et al.  Lipid‐based nanotherapeutics for siRNA delivery , 2010, Journal of internal medicine.

[47]  I. MacRae,et al.  The RNA-induced Silencing Complex: A Versatile Gene-silencing Machine* , 2009, The Journal of Biological Chemistry.

[48]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[49]  Daniel G. Anderson,et al.  Knocking down barriers: advances in siRNA delivery , 2009, Nature Reviews Drug Discovery.

[50]  J. Doudna,et al.  A three-dimensional view of the molecular machinery of RNA interference , 2009, Nature.

[51]  Matthias John,et al.  RNAi-mediated gene silencing in non-human primates , 2006, Nature.

[52]  T. Tuschl,et al.  Mechanisms of gene silencing by double-stranded RNA , 2004, Nature.

[53]  A. Klippel,et al.  Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. , 2003, Nucleic acids research.

[54]  P. Sharp,et al.  RNAi Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals , 2000, Cell.

[55]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[56]  S. Cohen,et al.  microRNA functions. , 2007, Annual review of cell and developmental biology.