Ion channels versus ion pumps: the principal difference, in principle

[1]  A. Takeuchi,et al.  Peering into an ATPase ion pump with single-channel recordings , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[2]  Paola Vergani,et al.  ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  Christopher H. Thompson,et al.  Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters , 2008, Proceedings of the National Academy of Sciences.

[4]  E. Gouaux The molecular logic of sodium-coupled neurotransmitter transporters , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  A. Takeuchi,et al.  The ion pathway through the opened Na+,K+-ATPase pump , 2008, Nature.

[6]  Carole Williams,et al.  Ion permeation through a Cl−-selective channel designed from a CLC Cl−/H+ exchanger , 2008, Proceedings of the National Academy of Sciences.

[7]  Merritt Maduke,et al.  The ClC-0 chloride channel is a ‘broken’ Cl−/H+ antiporter , 2008, Nature Structural &Molecular Biology.

[8]  J. Mornon,et al.  Atomic model of human cystic fibrosis transmembrane conductance regulator: Membrane-spanning domains and coupling interfaces , 2008, Cellular and Molecular Life Sciences.

[9]  R. Vandenberg,et al.  Slips, leaks and channels in glutamate transporters , 2008, Channels.

[10]  C. Oxvig,et al.  The structural basis of calcium transport by the calcium pump , 2007, Nature.

[11]  P. Nissen,et al.  Crystal structure of the sodium–potassium pump , 2007, Nature.

[12]  C. Toyoshima,et al.  How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump , 2007, Proceedings of the National Academy of Sciences.

[13]  K. Altendorf,et al.  The K+-translocating KdpFABC complex from Escherichia coli: A P-type ATPase with unique features , 2007, Journal of bioenergetics and biomembranes.

[14]  Anastassios V. Tzingounis,et al.  Glutamate transporters: confining runaway excitation by shaping synaptic transmission , 2007, Nature Reviews Neuroscience.

[15]  Geoffrey Chang,et al.  Flexibility in the ABC transporter MsbA: Alternating access with a twist , 2007, Proceedings of the National Academy of Sciences.

[16]  F. Quiocho,et al.  Crystal structure of a catalytic intermediate of the maltose transporter , 2007, Nature.

[17]  R. Dutzler,et al.  A structural perspective on ClC channel and transporter function , 2007, FEBS letters.

[18]  S. Amara,et al.  Glutamate and monoamine transporters: new visions of form and function , 2007, Current Opinion in Neurobiology.

[19]  J. Mindell,et al.  The uncoupled chloride conductance of a bacterial glutamate transporter homolog , 2007, Nature Structural &Molecular Biology.

[20]  Chen Xu,et al.  Uncoupling and Turnover in a Cl−/H+ Exchange Transporter , 2007, The Journal of general physiology.

[21]  K. Locher,et al.  Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP‐PNP , 2007, FEBS letters.

[22]  D. Gadsby,et al.  Ion permeation through the Na+,K+-ATPase , 2006, Nature.

[23]  R. Dawson,et al.  Structure of a bacterial multidrug ABC transporter , 2006, Nature.

[24]  Christopher Miller,et al.  ClC chloride channels viewed through a transporter lens , 2006, Nature.

[25]  Paola Vergani,et al.  The ABC protein turned chloride channel whose failure causes cystic fibrosis , 2006, Nature.

[26]  R. Dutzler,et al.  Ion‐binding properties of the ClC chloride selectivity filter , 2006, The EMBO journal.

[27]  Jue Chen,et al.  ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Carole Williams,et al.  Separate Ion Pathways in a Cl−/H+ Exchanger , 2005, The Journal of general physiology.

[29]  Poul Nissen,et al.  Transport mechanism of the sarcoplasmic reticulum Ca2+ -ATPase pump. , 2005, Current opinion in structural biology.

[30]  Michael Pusch,et al.  Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5 , 2005, Nature.

[31]  Merritt Maduke,et al.  Cysteine Accessibility in ClC-0 Supports Conservation of the ClC Intracellular Vestibule , 2005, The Journal of general physiology.

[32]  Paola Vergani,et al.  CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains , 2005, Nature.

[33]  P. Nissen,et al.  Dephosphorylation of the Calcium Pump Coupled to Counterion Occlusion , 2004, Science.

[34]  Hiromi Nomura,et al.  Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues , 2004, Nature.

[35]  C. Toyoshima,et al.  Crystal structure of the calcium pump with a bound ATP analogue , 2004, Nature.

[36]  Poul Nissen,et al.  Phosphoryl Transfer and Calcium Ion Occlusion in the Calcium Pump , 2004, Science.

[37]  R. Vandenberg,et al.  The Chloride Permeation Pathway of a Glutamate Transporter and Its Proximity to the Glutamate Translocation Pathway* , 2004, Journal of Biological Chemistry.

[38]  D. Gadsby,et al.  Large Diameter of Palytoxin-induced Na/K Pump Channels and Modulation of Palytoxin Interaction by Na/K Pump Ligands , 2004, The Journal of general physiology.

[39]  Christopher Miller,et al.  Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels , 2004, Nature.

[40]  D. Gadsby Ion transport: Spot the difference , 2004, Nature.

[41]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Canhui Li,et al.  CFTR directly mediates nucleotide‐regulated glutathione flux , 2003, The EMBO journal.

[43]  Michael Pusch,et al.  Conservation of Chloride Channel Structure Revealed by an Inhibitor Binding Site in ClC-1 , 2003, Neuron.

[44]  Roderick MacKinnon,et al.  Gating the Selectivity Filter in ClC Chloride Channels , 2003, Science.

[45]  D. Gadsby,et al.  Na+/K+-pump ligands modulate gating of palytoxin-induced ion channels , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Gadsby,et al.  Ion Channel—like Properties of the Na+/K+ Pump , 2002, Annals of the New York Academy of Sciences.

[47]  Hiromi Nomura,et al.  Structural changes in the calcium pump accompanying the dissociation of calcium , 2002, Nature.

[48]  John F Hunt,et al.  ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. , 2002, Molecular cell.

[49]  R. Dutzler,et al.  X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity , 2002, Nature.

[50]  Roderick MacKinnon,et al.  Energetic optimization of ion conduction rate by the K+ selectivity filter , 2001, Nature.

[51]  R. MacKinnon,et al.  Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution , 2001, Nature.

[52]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[53]  Mei-fang Chen,et al.  Different Fast-Gate Regulation by External Cl− and H+ of the Muscle-Type Clc Chloride Channels , 2001, The Journal of general physiology.

[54]  T. Sixma DNA mismatch repair: MutS structures bound to mismatches. , 2001, Current Opinion in Structural Biology.

[55]  M. Tosteson Mechanism of Action, Pharmacology, and Toxicology , 2000 .

[56]  Luis M. Botana,et al.  Seafood and freshwater toxins : pharmacology, physiology, and detection , 2000 .

[57]  John A. Tainer,et al.  Structural Biology of Rad50 ATPase ATP-Driven Conformational Control in DNA Double-Strand Break Repair and the ABC-ATPase Superfamily , 2000, Cell.

[58]  M. Nakasako,et al.  Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution , 2000, Nature.

[59]  T. Otis,et al.  Isolation of Current Components and Partial Reaction Cycles in the Glial Glutamate Transporter EAAT2 , 2000, The Journal of Neuroscience.

[60]  F. Conti,et al.  The Muscle Chloride Channel ClC-1 Has a Double-Barreled Appearance that Is Differentially Affected in Dominant and Recessive Myotonia , 1999, The Journal of general physiology.

[61]  M. Kavanaugh,et al.  Macroscopic and Microscopic Properties of a Cloned Glutamate Transporter/Chloride Channel , 1998, The Journal of Neuroscience.

[62]  P. Linsdell,et al.  Adenosine Triphosphate–dependent Asymmetry of Anion Permeation in the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel , 1998, The Journal of general physiology.

[63]  C. Wu,et al.  Palytoxin-induced single-channel currents from the sodium pump synthesized by in vitro expression. , 1997, Toxicon : official journal of the International Society on Toxinology.

[64]  Thomas J. Jentsch,et al.  Two physically distinct pores in the dimeric CIC-0 chloride channel , 1996, Nature.

[65]  Christopher Miller,et al.  Homodimeric architecture of a CIC-type chloride ion channel , 1996, Nature.

[66]  F. Werblin,et al.  Noise analysis of the glutamate-activated current in photoreceptors. , 1996, Biophysical journal.

[67]  J. Inazawa,et al.  Reconstitution of IKATP: An Inward Rectifier Subunit Plus the Sulfonylurea Receptor , 1995, Science.

[68]  M. Kavanaugh,et al.  An excitatory amino-acid transporter with properties of a ligand-gated chloride channel , 1995, Nature.

[69]  M. Christ,et al.  Palytoxin induces K+ efflux from yeast cells expressing the mammalian sodium pump. , 1994, Molecular pharmacology.

[70]  E. A. Richard,et al.  Steady-state coupling of ion-channel conformations to a transmembrane ion gradient. , 1990, Science.

[71]  Forbush B rd,et al.  Rapid release of 42K and 86Rb from an occluded state of the Na,K-pump in the presence of ATP or ADP. , 1987 .

[72]  D. Gadsby,et al.  Voltage dependence of Na translocation by the Na/K pump , 1986, Nature.

[73]  Akinori Noma,et al.  Voltage dependence of Na/K pump current in isolated heart cells , 1985, Nature.

[74]  C. Miller Open-state substructure of single chloride channels from Torpedo electroplax. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[75]  P. Läuger A channel mechanism for electrogenic ion pumps. , 1979, Biochimica et biophysica acta.

[76]  S. Kume,et al.  Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. , 1972, The Journal of biological chemistry.

[77]  O. Jardetzky,et al.  Simple Allosteric Model for Membrane Pumps , 1966, Nature.

[78]  G. Vidaver Inhibition of parallel flux and augmentation of counter flux shown by transport models not involving a mobile carrier. , 1966, Journal of Theoretical Biology.

[79]  C. Patlak,et al.  Contributions to the theory of active transport: II. The gate type non-carrier mechanism and generalizations concerning tracer flow, efficiency, and measurement of energy expenditure , 1957 .

[80]  C. Patlak Contributions to the theory of active transport , 1956 .

[81]  John M. Walker,et al.  Potassium Channels , 2009, Methods in Molecular Biology.

[82]  M. Pusch,et al.  CLC chloride channels and transporters: a biophysical and physiological perspective. , 2007, Reviews of physiology, biochemistry and pharmacology.

[83]  T. Jentsch,et al.  Physiological functions of CLC Cl- channels gleaned from human genetic disease and mouse models. , 2005, Annual review of physiology.

[84]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[85]  B. Sakmann,et al.  Single-Channel Recording , 1995, Springer US.

[86]  E. Habermann Palytoxin acts through Na+,K+-ATPase. , 1989, Toxicon : official journal of the International Society on Toxinology.

[87]  L. Tsui,et al.  Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. , 1989, Science.

[88]  B. Forbush Rapid release of 42K and 86Rb from an occluded state of the Na,K-pump in the presence of ATP or ADP. , 1987, The Journal of biological chemistry.

[89]  G. Yarrington Molecular Cell Biology , 1987, The Yale Journal of Biology and Medicine.

[90]  T. Simons The interaction of ATP‐analogues possessing a blocked gamma‐phosphate group with the sodium pump in human red cells. , 1975, The Journal of physiology.

[91]  P. L. Jørgensen Isolation of (Na+ plus K+)-ATPase. , 1974, Methods in enzymology.

[92]  P. L. Jørgensen [26] Isolation of (Na+ + K+)-ATPase , 1974 .

[93]  R. Post,et al.  The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. , 1957, Biochimica et biophysica acta.