Anti-CRISPR AcrIIa6 cubic form

CRISPR-Cas systems are bacterial anti-viral systems, and bacterial viruses (bacteriophages, phages) can carry anti-CRISPR (Acr) proteins to evade that immunity. Acrs can also fine-tune the activity of CRISPR-based genome-editing tools. While Acrs are prevalent in phages capable of lying dormant in a CRISPR-carrying host, their orthologs have been observed only infrequently in virulent phages. Here we identify AcrIIA6, an Acr encoded in 33% of virulent Streptococcus thermophilus phage genomes. The X-ray structure of AcrIIA6 displays some features unique to this Acr family. We compare the activity of AcrIIA6 to those of other Acrs, including AcrIIA5 (also from S. thermophilus phages), and characterize their effectiveness against a range of CRISPR-Cas systems. Finally, we demonstrate that both Acr families from S. thermophilus phages inhibit Cas9-mediated genome editing of human cells.

[1]  E. Koonin,et al.  Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity , 2018, Nature Microbiology.

[2]  Vincent Noireaux,et al.  Rapid and Scalable Characterization of CRISPR Technologies Using an E. coli Cell-Free Transcription-Translation System. , 2018, Molecular cell.

[3]  E. Bae,et al.  Crystal structure of an anti-CRISPR protein, AcrIIA1 , 2017, Nucleic acids research.

[4]  Alan R. Davidson,et al.  Anti-CRISPR: discovery, mechanism and function , 2017, Nature Reviews Microbiology.

[5]  Prashant Rao,et al.  Cryo-EM Structures Reveal Mechanism and Inhibition of DNA Targeting by a CRISPR-Cas Surveillance Complex , 2017, Cell.

[6]  H. Neve,et al.  Global Survey and Genome Exploration of Bacteriophages Infecting the Lactic Acid Bacterium Streptococcus thermophilus , 2017, Front. Microbiol..

[7]  Jennifer A. Doudna,et al.  A Broad-Spectrum Inhibitor of CRISPR-Cas9 , 2017, Cell.

[8]  Philippe Horvath,et al.  An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9 , 2017, Nature Microbiology.

[9]  Hui Yang,et al.  Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9. , 2017, Molecular cell.

[10]  G. Gao,et al.  Alternate binding modes of anti-CRISPR viral suppressors AcrF1/2 to Csy surveillance complex revealed by cryo-EM structures , 2017, Cell Research.

[11]  Zhi Xiong,et al.  Structural basis of CRISPR–SpyCas9 inhibition by an anti-CRISPR protein , 2017, Nature.

[12]  Jennifer A. Doudna,et al.  Disabling Cas9 by an anti-CRISPR DNA mimic , 2017, Science Advances.

[13]  G. Lander,et al.  Structure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided Surveillance Complex , 2017, Cell.

[14]  H. Deveau,et al.  Detecting natural adaptation of the Streptococcus thermophilus CRISPR-Cas systems in research and classroom settings , 2017, Nature Protocols.

[15]  Kira S. Makarova,et al.  SnapShot: Class 2 CRISPR-Cas Systems , 2017, Cell.

[16]  Nevan J. Krogan,et al.  Inhibition of CRISPR-Cas9 with Bacteriophage Proteins , 2017, Cell.

[17]  A. Neves,et al.  Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species , 2016, Applied and Environmental Microbiology.

[18]  Yan Zhang,et al.  Naturally Occurring Off-Switches for CRISPR-Cas9 , 2016, Cell.

[19]  A. Davidson,et al.  The solution structure of an anti-CRISPR protein , 2016, Nature Communications.

[20]  L. Szewczak When a Stomach Bug Comes Calling , 2016, Cell.

[21]  Yan Zhou,et al.  Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3 , 2016, Nature Structural &Molecular Biology.

[22]  H. Neve,et al.  Identification and Analysis of a Novel Group of Bacteriophages Infecting the Lactic Acid Bacterium Streptococcus thermophilus , 2016, Applied and Environmental Microbiology.

[23]  Peter C. Fineran,et al.  Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species , 2016, Nature Microbiology.

[24]  Alexander P. Hynes,et al.  Programming Native CRISPR Arrays for the Generation of Targeted Immunity , 2016, mBio.

[25]  Johannes Söding,et al.  The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis , 2016, Nucleic Acids Res..

[26]  Maximilian Müller,et al.  Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome. , 2016, Molecular therapy : the journal of the American Society of Gene Therapy.

[27]  B. Currie,et al.  Epidemiology: A global picture of melioidosis , 2016, Nature.

[28]  J. Joung,et al.  High-fidelity CRISPR-Cas9 variants with undetectable genome-wide off-targets , 2015, Nature.

[29]  Y. Doyon,et al.  A Scalable Genome-Editing-Based Approach for Mapping Multiprotein Complexes in Human Cells. , 2015, Cell reports.

[30]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[31]  Alan R. Davidson,et al.  Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins , 2015, Nature.

[32]  Alexey Drozdetskiy,et al.  JPred4: a protein secondary structure prediction server , 2015, Nucleic Acids Res..

[33]  S. Moineau,et al.  Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages , 2014, Nature Communications.

[34]  Alan R. Davidson,et al.  A New Group of Phage Anti-CRISPR Genes Inhibits the Type I-E CRISPR-Cas System of Pseudomonas aeruginosa , 2014, mBio.

[35]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[36]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[37]  Alan R. Davidson,et al.  Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system , 2012, Nature.

[38]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[39]  Sylvain Moineau,et al.  Cleavage of Phage DNA by the Streptococcus thermophilus CRISPR3-Cas System , 2012, PloS one.

[40]  J. McGeehan,et al.  Recognition of dual symmetry by the controller protein C.Esp1396I based on the structure of the transcriptional activation complex , 2011, Nucleic acids research.

[41]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[42]  Philippe Horvath,et al.  The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA , 2010, Nature.

[43]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[44]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[45]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[46]  Philippe Horvath,et al.  Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus , 2007, Journal of bacteriology.

[47]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[48]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[49]  Kevin Cowtan,et al.  The Buccaneer software for automated model building , 2006 .

[50]  G. Bricogne,et al.  Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. , 2004, Acta crystallographica. Section D, Biological crystallography.

[51]  C. Cambillau,et al.  Optimization of crystals from nanodrops: crystallization and preliminary crystallographic study of a pheromone-binding protein from the honeybee Apis mellifera L. , 2003, Acta crystallographica. Section D, Biological crystallography.

[52]  S. Johnston,et al.  ORF-FINDER: a vector for high-throughput gene identification. , 2002, Gene.

[53]  S. Moineau,et al.  Complete genomic sequence of the lytic bacteriophage DT1 of Streptococcus thermophilus. , 1999, Virology.

[54]  M. Borodovsky,et al.  GeneMark.hmm: new solutions for gene finding. , 1998, Nucleic acids research.

[55]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[56]  L. Walsh,et al.  Two groups of bacteriophages infecting Streptococcus thermophilus can be distinguished on the basis of mode of packaging and genetic determinants for major structural proteins , 1997, Applied and environmental microbiology.

[57]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[58]  I. Dodd,et al.  Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. , 1990, Nucleic acids research.

[59]  I. Nes,et al.  High-Frequency Transformation, by Electroporation, of Lactococcus lactis subsp. cremoris Grown with Glycine in Osmotically Stabilized Media , 1989, Applied and environmental microbiology.

[60]  F. Raymond,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ray Meta: scalable de novo metagenome assembly and profiling , 2012 .

[61]  Jeffrey C. Miller,et al.  A rapid and general assay for monitoring endogenous gene modification. , 2010, Methods in molecular biology.