New Insights into the Binding Mode of Melanin Concentrating Hormone Receptor-1 Antagonists: Homology Modeling and Explicit Membrane Molecular Dynamics Simulation Study
暂无分享,去创建一个
Melanin concentrating hormone (MCH) is a cyclic 19-amino-acid peptide expressed mainly in the hypothalamus. It is involved in the control of feeding behavior, energy homeostasis, and body weight. Administration of MCH-R1 antagonists has been proved to reduce food intake and cause weight loss in animal models. In the present study, a homology model of the human MCH-R1 was constructed using the crystal structure of bovine rhodopsin (PDB: 1u19) as a template. Based on the observation that MCH-R1 can bind ligands of high chemical diversity, the initial model was subjected to an extensive ligand-supported refinement using antagonists of different chemotypes. The refinement process involved stepwise energy minimizations and molecular dynamics simulations. The refined model was inserted into a pre-equilibrated DPPC/TIP3P membrane system and then simulated for 20 ns in complex with structurally diverse antagonists. This protocol was able to explain the SAR of MCH-R1 antagonists with diverse chemical structures. Moreover, it reveals new insights into the critical recognition sites within the receptor. This work represents the first detailed study of molecular dynamics of MCH-R1 inserted into a membrane-aqueous environment.