Beyond random walk and metropolis-hastings samplers: why you should not backtrack for unbiased graph sampling
暂无分享,去创建一个
Xin Xu | Do Young Eun | Chul-Ho Lee | Chul-Ho Lee | D. Y. Eun | Xin Xu
[1] N. Alon,et al. Non-backtracking random walks mix faster , 2006, math/0610550.
[2] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[3] Matthew J. Salganik,et al. 5. Sampling and Estimation in Hidden Populations Using Respondent-Driven Sampling , 2004 .
[4] Christian P. Robert,et al. A vanilla Rao--Blackwellization of Metropolis--Hastings algorithms , 2009, 0904.2144.
[5] Masafumi Yamashita,et al. The hitting and cover times of random walks on finite graphs using local degree information , 2009, Theor. Comput. Sci..
[6] David J. Aldous,et al. Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .
[7] Radford M. Neal,et al. ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .
[8] P. Peskun,et al. Optimum Monte-Carlo sampling using Markov chains , 1973 .
[9] Galin L. Jones. On the Markov chain central limit theorem , 2004, math/0409112.
[10] Persi Diaconis,et al. Examples comparing importance sampling and the Metropolis algorithm , 2006 .
[11] XuXin,et al. Beyond random walk and metropolis-hastings samplers , 2012 .
[12] Antonietta Mira,et al. Ordering and Improving the Performance of Monte Carlo Markov Chains , 2001 .
[13] Stephen P. Boyd,et al. Fastest Mixing Markov Chain on a Graph , 2004, SIAM Rev..
[14] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[15] Kyomin Jung,et al. Fast Gossip via Non-reversible Random Walk , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.
[16] Radford M. Neal. Improving Asymptotic Variance of MCMC Estimators: Non-reversible Chains are Better , 2004, math/0407281.
[17] J. Rosenthal,et al. General state space Markov chains and MCMC algorithms , 2004, math/0404033.
[18] R. Ash,et al. Probability and measure theory , 1999 .
[19] Matthew J. Salganik,et al. Respondent‐driven sampling as Markov chain Monte Carlo , 2009, Statistics in medicine.
[20] Donald F. Towsley,et al. Estimating and sampling graphs with multidimensional random walks , 2010, IMC '10.
[21] Wen J. Li,et al. Accelerating Distributed Consensus Via Lifting Markov Chains , 2007, 2007 IEEE International Symposium on Information Theory.
[22] G. Iliopoulos,et al. On convergence of properly weighted samples to the target distribution , 2008 .
[23] Anne-Marie Kermarrec,et al. Peer counting and sampling in overlay networks: random walk methods , 2006, PODC '06.
[24] Martin T. Wells,et al. An Extension of the Metropolis Algorithm , 2005 .
[25] Minas Gjoka,et al. Practical Recommendations on Crawling Online Social Networks , 2011, IEEE Journal on Selected Areas in Communications.
[26] Walter Willinger,et al. On Unbiased Sampling for Unstructured Peer-to-Peer Networks , 2006, IEEE/ACM Transactions on Networking.
[27] Donald F. Towsley,et al. Improving Random Walk Estimation Accuracy with Uniform Restarts , 2010, WAW.
[28] Walter Willinger,et al. Respondent-Driven Sampling for Characterizing Unstructured Overlays , 2009, IEEE INFOCOM 2009.
[29] Thomas Sauerwald,et al. Speeding up random walks with neighborhood exploration , 2010, SODA '10.
[30] P. Green,et al. Delayed rejection in reversible jump Metropolis–Hastings , 2001 .
[31] V. Climenhaga. Markov chains and mixing times , 2013 .
[32] Mohammad Al Hasan,et al. Output Space Sampling for Graph Patterns , 2009, Proc. VLDB Endow..
[33] Fang Chen,et al. Lifting Markov chains to speed up mixing , 1999, STOC '99.
[34] Sheldon M. Ross,et al. Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.