Implementation of a Tableau-based Satisfiability Checker for HS3

Although there exist several decidable fragments of Halpern and Shoham’s interval temporal logic HS, the computational complexity of their satisfiability problem tend to be generally high. Recently, the fragment HS3 of HS, based on coarser-than-Allen’s relations, has been introduced, and it has been proven to be not only decidable, but also relatively efficient. In this paper we describe an implementation of a tableau-based satisfiability checker for HS3 interpreted in the class of all finite linear orders.

[1]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[2]  Guido Sciavicco,et al.  Decidability of Interval Temporal Logics over Split-Frames via Granularity , 2002, JELIA.

[3]  Howard Bowman,et al.  A Tableau Method for Interval Temporal Logic with Projection , 1998, TABLEAUX.

[4]  Benjamin Charles Moszkowski Reasoning about Digital Circuits , 1983 .

[5]  Valentin Goranko,et al.  A complete classification of the expressiveness of interval logics of Allen’s relations: the general and the dense cases , 2016, Acta Informatica.

[6]  Davide Bresolin,et al.  DL-Lite and Interval Temporal Logics: a Marriage Proposal , 2014, ECAI.

[7]  Valentin Goranko,et al.  Propositional Interval Neighborhood Temporal Logics , 2003, J. Univers. Comput. Sci..

[8]  Fred Zemke What.s new in SQL:2011 , 2012, SGMD.

[9]  Davide Bresolin,et al.  A Tableau System for Right Propositional Neighborhood Logic over Finite Linear Orders: An Implementation , 2013, TABLEAUX.

[10]  Alessandro Artale,et al.  A Cookbook for Temporal Conceptual Data Modelling with Description Logics , 2012, TOCL.

[11]  Zhou Chaochen,et al.  Duration Calculus: A Formal Approach to Real-Time Systems , 2004 .

[12]  Claudio Bettini,et al.  Time-Dependent Concepts: Representation and Reasoning Using Temporal Description Logics , 1997, Data Knowl. Eng..

[13]  Valentin Goranko,et al.  Tableau Tool for Testing Satisfiability in LTL: Implementation and Experimental Analysis , 2010, M4M.

[14]  Dominique Longin,et al.  Lotrec : The Generic Tableau Prover for Modal and Description Logics , 2001, IJCAR.

[15]  Albrecht Schmiedel,et al.  Temporal Terminological Logic , 1990, AAAI.

[16]  Davide Bresolin,et al.  The light side of interval temporal logic: the Bernays-Schönfinkel fragment of CDT , 2014, 2011 Eighteenth International Symposium on Temporal Representation and Reasoning.

[17]  Davide Bresolin,et al.  Interval temporal logics over strongly discrete linear orders: Expressiveness and complexity , 2014, Theor. Comput. Sci..

[18]  Enrico Franconi,et al.  A Temporal Description Logic for Reasoning about Actions and Plans , 1998, J. Artif. Intell. Res..

[19]  Pierre Wolper,et al.  Automata theoretic techniques for modal logics of programs: (Extended abstract) , 1984, STOC '84.

[20]  E. Muñoz,et al.  Horn Fragments of the Halpern-Shoham Interval Temporal Logic , 2017 .

[21]  Ian Pratt-Hartmann,et al.  Temporal prepositions and their logic , 2004, Artif. Intell..

[22]  Davide Bresolin,et al.  Tableaux for Logics of Subinterval Structures over Dense Orderings , 2010, J. Log. Comput..

[23]  Peter Balsiger,et al.  A Benchmark Method for the Propositional Modal Logics K, KT, S4 , 2004, Journal of Automated Reasoning.

[24]  Ron Shamir,et al.  Complexity and algorithms for reasoning about time: a graph-theoretic approach , 1993, JACM.

[25]  Davide Bresolin,et al.  Sub-propositional Fragments of the Interval Temporal Logic of Allen's Relations , 2014, JELIA.

[26]  Renate A. Schmidt,et al.  The Tableau Prover Generator MetTeL2 , 2012, JELIA.

[27]  Angelo Montanari,et al.  Decidability of the Logics of the Reflexive Sub-interval and Super-interval Relations over Finite Linear Orders , 2010, 2010 17th International Symposium on Temporal Representation and Reasoning.

[28]  Stefan Schwendimann,et al.  A New One-Pass Tableau Calculus for PLTL , 1998, TABLEAUX.

[29]  Guido Sciavicco,et al.  On Coarser Interval Temporal Logics and their Satisfiability Problem , 2015, CAEPIA.

[30]  Yoav Shoham,et al.  A propositional modal logic of time intervals , 1991, JACM.

[31]  Dario Della Monica,et al.  First Steps towards Automated Synthesis of Tableau Systems for Interval Temporal Logics , 2014 .

[32]  Angelo Montanari,et al.  Checking interval properties of computations , 2014, Acta Informatica.