Robust admissibility of uncertain switched singular systems

This article investigates the robust admissibility of uncertain discrete-time switched singular systems. First, the admissibility is introduced, by using the switched Lyapunov function, for singular systems. Sufficient conditions for robust admissibility of uncertain switched singular systems are presented in strict linear matrix inequalities formulation. Robust admissibility condition designs for both state feedback and static output control feedback are then derived. Numerical examples are provided to illustrate our approach.

[1]  Wen-Wei Lin,et al.  Regularization of Linear Discrete-Time Periodic Descriptor Systems by Derivative and Proportional State Feedback , 2004, SIAM J. Matrix Anal. Appl..

[2]  Lihua Xie,et al.  H∞ estimation for uncertain systems , 1992 .

[3]  Haiying Jing Eigenstructure assignment by proportional-derivative state feedback in singular systems , 1994 .

[4]  Alexandre Trofino,et al.  Sufficient LMI conditions for output feedback control problems , 1999, IEEE Trans. Autom. Control..

[5]  T.G. Habetler,et al.  High-performance induction motor speed control using exact feedback linearization with state and state derivative feedback , 2003, IEEE Transactions on Power Electronics.

[6]  M. Boutayeb,et al.  Design of observers for descriptor systems , 1995, IEEE Trans. Autom. Control..

[7]  Dianhui Wang,et al.  On regularizing singular systems by decentralized output feedback , 1999, IEEE Trans. Autom. Control..

[8]  Pradeep Misra,et al.  On the discrete generalized Lyapunov equation, , 1995, Autom..

[9]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[10]  D. Luenberger Non-linear descriptor systems , 1979 .

[11]  Daniel W. C. Ho,et al.  Stability, robust stabilization and H∞ control of singular-impulsive systems via switching control , 2006, Syst. Control. Lett..

[12]  Jamal Daafouz,et al.  Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach , 2002, IEEE Trans. Autom. Control..

[13]  A. Bunse-Gerstner,et al.  Feedback design for regularizing descriptor systems , 1999 .

[14]  Lihua Xie,et al.  H∞ estimation for discrete-time linear uncertain systems , 1991 .

[15]  Robert W. Newcomb,et al.  Some circuits and systems applications of semistate theory , 1989 .

[16]  Jamal Daafouz,et al.  Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties , 2001, Syst. Control. Lett..

[17]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[18]  François Delebecque,et al.  LMITOOL: a Package for LMI Optimization in Scilab User's Guide , 1995 .

[19]  Shengyuan Xu,et al.  Robust stability and stabilization of discrete singular systems: an equivalent characterization , 2004, IEEE Transactions on Automatic Control.

[20]  Zhang,et al.  Output Feedback Based Admissible Control of Switched Linear Singular Systems , 2006 .

[21]  F. Lewis A survey of linear singular systems , 1986 .

[22]  François Delebecque,et al.  Nonlinear Descriptor Systems , 1999 .

[23]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[24]  E. Fridman,et al.  H∞-control of linear state-delay descriptor systems: an LMI approach , 2002 .

[25]  A. Varga On stabilization methods of descriptor systems , 1995 .

[26]  Mohamed Darouach Solution to Sylvester equation associated to linear descriptor systems , 2006, Syst. Control. Lett..

[27]  Izumi Masubuchi,et al.  PII: S0005-1098(96)00193-8 , 2003 .

[28]  F. Allgöwer,et al.  Self-scheduled H∞ output feedback control of descriptor systems , 2000 .

[29]  Andrew A. Goldenberg,et al.  Force and position control of manipulators during constrained motion tasks , 1989, IEEE Trans. Robotics Autom..

[30]  Maurício C. de Oliveira,et al.  Robust Filtering of Discrete-Time Linear Systems with Parameter Dependent Lyapunov Functions , 2002, SIAM J. Control. Optim..

[31]  Yuanqing Xia,et al.  New bounded real lemma for discrete-time singular systems , 2008, Autom..

[32]  Yuanqing Xia,et al.  Stability and stabilization of continuous-time singular hybrid systems , 2009, Autom..

[33]  Lihua Xie,et al.  New approaches to robust minimum variance filter design , 2001, IEEE Trans. Signal Process..

[34]  Yuanqing Xia,et al.  Descriptor discrete-time systems with random abrupt changes: stability and stabilisation , 2008, Int. J. Control.

[35]  I. Petersen A stabilization algorithm for a class of uncertain linear systems , 1987 .

[36]  Guang-Ren Duan,et al.  REGULARIZABILITY OF LINEAR DESCRIPTOR SYSTEMS VIA OUTPUT PLUS PARTIAL STATE DERIVATIVE FEEDBACK , 2008 .

[37]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[38]  M. Darouach,et al.  Stabilisation of Singular LPV Systems , 2008 .

[39]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[40]  J. Chu,et al.  Regularisation and stabilisation of linear discrete-time descriptor systems [Brief Paper] , 2010 .

[41]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[42]  J. Doyle,et al.  Essentials of Robust Control , 1997 .