Synthesis and Characterization of Ion Pairs between Alkaline Metal Ions and Anionic Anti-Aromatic and Aromatic Hydrocarbons with π-Conjugated Central Seven- and Eight-Membered Rings

The synthesis, isolation and full characterization of ion pairs between alkaline metal ions (Li+, Na+, K+) and mono-anions and dianions obtained from 5H-dibenzo[a,d]cycloheptenyl (C15H11 = trop) is reported. According to Nuclear Magnetic Resonance (NMR) spectroscopy, single crystal X-ray analysis and Density Functional Theory (DFT) calculations, the trop‒ and trop2−• anions show anti-aromatic properties which are dependent on the counter cation M+ and solvent molecules serving as co-ligands. For comparison, the disodium and dipotassium salt of the dianion of dibenzo[a,e]cyclooctatetraene (C16H12 = dbcot) were prepared, which show classical aromatic character. A d8-Rh(I) complex of trop− was prepared and the structure shows a distortion of the C15H11 ligand into a conjugated 10π -benzo pentadienide unit—to which the Rh(I) center is coordinated—and an aromatic 6π electron benzo group which is non-coordinated. Electron transfer reactions between neutral and anionic trop and dbcot species show that the anti-aromatic compounds obtained from trop are significantly stronger reductants.

[1]  S. Harder,et al.  Dibenzotropylidene Substituted Ligands for Early Main Group Metal‐Alkene Bonding , 2020 .

[2]  B. de Bruin,et al.  Ligand‐ and Metal‐Based Reactivity of a Neutral Ruthenium Diolefin Diazadiene Complex: The Innocent, the Guilty and the Suspicious , 2018, Chemistry.

[3]  B. de Bruin,et al.  Homogeneously catalysed conversion of aqueous formaldehyde to H2 and carbonate , 2017, Nature Communications.

[4]  M. Reiher,et al.  Nitrous Oxide as a Hydrogen Acceptor for the Dehydrogenative Coupling of Alcohols. , 2016, Angewandte Chemie.

[5]  L. Viciu,et al.  Reactivity of an All-Ferrous Iron-Nitrogen Heterocubane under Reductive and Oxidative Conditions. , 2015, Chemistry.

[6]  Bas de Bruin,et al.  Low-valent iron(i) amido olefin complexes as promotors for dehydrogenation reactions. , 2015, Angewandte Chemie.

[7]  G. Sheldrick SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.

[8]  G. Helmchen,et al.  Dibenzo[a,e]cyclooctene: Multi‐gram Synthesis of a Bidentate Ligand , 2014 .

[9]  R. Rodríguez‐Lugo,et al.  A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures. , 2013, Nature chemistry.

[10]  Francesco A. Evangelista,et al.  Is cyclobutadiene really highly destabilized by antiaromaticity? , 2012, Chemical communications.

[11]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[12]  Jean‐Valère Naubron,et al.  Catalyzed dehydrogenative coupling of primary alcohols with water, methanol, or amines. , 2009, Angewandte Chemie.

[13]  Mark J. Drewitt,et al.  Synthesis and characterization of weakly coordinating anion salts of a new, stable carbocationic reagent, the dibenzosuberenyl (dibenzotropylium) ion , 2008 .

[14]  E. Carreira,et al.  Chiral olefins as steering ligands in asymmetric catalysis. , 2008, Angewandte Chemie.

[15]  Jean‐Valère Naubron,et al.  Ethanol as hydrogen donor: highly efficient transfer hydrogenations with rhodium(I) amides. , 2008, Angewandte Chemie.

[16]  H. Grützmacher,et al.  Cooperating ligands in catalysis. , 2008, Angewandte Chemie.

[17]  R. Crabtree,et al.  Di‐μ‐Chloro‐Bis(η4‐1,5‐Cyclooctadiene)‐Dirhodium(I) , 2007 .

[18]  H. Grützmacher,et al.  Trigonal pyramids: alternative ground-state structures for sixteen-electron complexes. , 2006, Angewandte Chemie.

[19]  P. Maire,et al.  Heterolytic splitting of hydrogen with rhodium(I) amides. , 2005, Angewandte Chemie.

[20]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[21]  R. Kaner,et al.  Intercalation and exfoliation routes to graphite nanoplatelets , 2005 .

[22]  A. Vogler,et al.  Ligand-to-ligand charge transfer in [(η-C5Me5)RhIII(η-C7H7)]3+: absorption and emission , 2004 .

[23]  V. Rawal,et al.  1,3‐Pentadiene , 2001 .

[24]  T. Prisner,et al.  Single crystals of an ionic anthracene aggregate with a triplet ground state , 2000, Nature.

[25]  M. Wörle,et al.  A Monomeric d9 -Rhodium(0) Complex. , 1998, Angewandte Chemie.

[26]  R. Salcedo,et al.  Theoretical study about the radicals and anions of [8]annulenes , 1997 .

[27]  A. Sygula,et al.  The first example of η8 coordination of lithium cations with a cyclooctatetraene dianion: crystal structure of Li2(dibenzo[a,e]cyclooctatetraene)(TMEDA)2 , 1996 .

[28]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[29]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[30]  Neil G. Connelly,et al.  Chemical Redox Agents for Organometallic Chemistry. , 1996, Chemical reviews.

[31]  Haijun Jiao,et al.  What is aromaticity? , 1996, J. Chem. Inf. Comput. Sci..

[32]  E. Krogh,et al.  Photodecarboxylation of Diarylacetic Acids in Aqueous Solution: Enhanced Photogeneration of Cyclically Conjugated Eight π Electron Carbanions. , 1992 .

[33]  C. Näther,et al.  DISTORTED MOLECULES : PERTURBATION DESIGN, PREPARATION AND STRUCTURES , 1992 .

[34]  R. D. Ernst Structural and reactivity patterns in transition-metal-pentadienyl chemistry , 1988 .

[35]  E. Krogh,et al.  Enhanced Formation of 8π(4n) Conjugated Cyclic Carbanions in the Excited State: First Example of Photochemical C-H Bond Heterolysis in Photoexcited Suberene. , 1988 .

[36]  E. Krogh,et al.  Enhanced formation of 8.pi.(4n) conjugated cyclic carbanions in the excited state: first example of photochemical C-H bond heterolysis in photoexcited suberene , 1988 .

[37]  R. Ball,et al.  Cycloheptatrienyl-bridged heterobimetallic complexes: facile phosphine substitution reactions of [cyclic] (.mu.-C7H7)Fe(CO)3Rh(CO)2 , 1986 .

[38]  K. Muellen Reduction and oxidation of annulenes , 1984 .

[39]  L. Oro,et al.  Azulene as a ligand in cationic rhodium and iridium complexes. Crystal structure of [Rh(TFB)(az)]PF6 , 1984 .

[40]  H. Irngartinger,et al.  Structures of dibenzo[a,e]cyclooctatetraene and tetrabenzo[a,c,e,g]cyclooctatetraene (o-tetraphenylene) , 1981 .

[41]  A. Ceccon,et al.  Metal-stabilized carbanions , 1981 .

[42]  R. Bates,et al.  Cycloheptatrienyl and heptatrienyl trianions , 1977 .

[43]  A. Bard,et al.  Electrochemical Reduction of sym-Dibenzocyclooctatetraene, sym-Dibenzo-1,5-cyclooctadiene-3,7-diyne, and sym-Dibenzo-1,3,5-cyclooctatrien-7-yne , 1976 .

[44]  N. H. Velthorst,et al.  Paramagnetic ring currents in the carbanion of 5H-dibenzo [a, d] cycloheptene and the nitranion of 5H-dibenz[b, f] azepine , 1974 .

[45]  N. L. Bauld,et al.  Dianion radicals. II. Tropenide systems , 1967 .

[46]  T. J. Katz,et al.  The sym-Dibenzcyclooctatetraene Anion Radical and Dianion , 1965 .

[47]  G. Berti Communications - Dibenzo[ a,e]tropylium and 5-Phenyldibenzo[a,e]tropylium Cations , 1957 .

[48]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[49]  A. Currao,et al.  Dibenzotropylidene phosphanes (TROPPs): synthesis and coinage metal complexes , 1998 .

[50]  D. Budac,et al.  Excited-state carbon acids. Facile benzylic carbon-hydrogen bond heterolysis of suberene on photolysis in aqueous solution: a photogenerated cyclically conjugated eight .pi. electron carbanion , 1992 .

[51]  E. Krogh,et al.  Photodecarboxylation of diarylacetic acids in aqueous solution: enhanced photogeneration of cyclically conjugated eight .pi. electron carbanions , 1992 .

[52]  E. Krogh,et al.  Carbanion intermediates in the photodecarboxylation of benzannelated acetic acids in aqueous solution , 1988 .

[53]  B. Skelton,et al.  The addition of small molecules to (η-C5H5)2Rh2(CO)(CF3C2CF3)—IX. CH bond activation in the reactions with dienes, polyenes and arenes; the crystal and molecular structure of [(η-C5H5)2Rh2{C(CF3)C(CF3)H}]2(C6H4) , 1988 .

[54]  A. Ceccon,et al.  Metal stabilized carbanions. Kinetic acidity and 1H n.m.r. spectrum of the π-(tricarbonylchromium)-5H-dibenzo[a,d]cycloheptenyl anion , 1982 .

[55]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[56]  F. Sondheimer,et al.  ESR. Spectra and Structures of Radical Anions in the Dibenzo[a, e]cyclooctene Series , 1976 .