Sufficient Dilated LMI Conditions for H∞ Static Output Feedback Robust Stabilization of Linear Continuous-Time Systems

New sufficient dilated linear matrix inequality (LMI) conditions for the 𝐻∞ static output feedback control problem of linear continuous-time systems with no uncertainty are proposed. The used technique easily and successfully extends to systems with polytopic uncertainties, by means of parameter-dependent Lyapunov functions (PDLFs). In order to reduce the conservatism existing in early standard LMI methods, auxiliary slack variables with even more relaxed structure are employed. It is shown that these slack variables provide additional flexibility to the solution. It is also shown, in this paper, that the proposed dilated LMI-based conditions always encompass the standard LMI-based ones. Numerical examples are given to illustrate the merits of the proposed method.

[1]  I. Postlethwaite,et al.  Static H/sub /spl infin// loop shaping control of a fly-by-wire helicopter , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[2]  Friedemann Leibfritz,et al.  An LMI-Based Algorithm for Designing Suboptimal Static H2/Hinfinity Output Feedback Controllers , 2000, SIAM J. Control. Optim..

[3]  Y. Ebihara,et al.  New dilated LMI characterizations for continuous-time control design and robust multiobjective control , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[4]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[5]  Pierre Apkarian,et al.  Nonsmooth H∞ synthesis , 2005, IEEE Trans. Autom. Control..

[6]  Jamal Daafouz,et al.  Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties , 2001, Syst. Control. Lett..

[7]  J. Geromel,et al.  Extended H 2 and H norm characterizations and controller parametrizations for discrete-time systems , 2002 .

[8]  J. Tsitsiklis,et al.  NP-hardness of some linear control design problems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[9]  C. de Souza,et al.  An LMI approach to stabilization of linear discrete-time periodic systems , 2000 .

[10]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[11]  Uri Shaked,et al.  Improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty , 2001, IEEE Trans. Autom. Control..

[12]  Wook Hyun Kwon,et al.  Sufficient LMI conditions for the H/sub /spl infin// output feedback stabilization of linear discrete-time systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[13]  E. Boukas,et al.  H∞ control for discrete‐time Markovian jump linear systems with partly unknown transition probabilities , 2009 .

[14]  Kamel Dabboussi,et al.  New Dilated LMI Characterization for the Multiobjective Full-Order Dynamic Output Feedback Synthesis Problem , 2010 .

[15]  D. Henrion,et al.  Polynomial Matrices, LMIs and Static Output Feedback , 2001 .

[16]  Tomomichi Hagiwara,et al.  New dilated LMI characterizations for continuous-time multiobjective controller synthesis , 2004, Autom..

[17]  Guang-Hong Yang,et al.  Static Output Feedback Control Synthesis for Linear Systems With Time-Invariant Parametric Uncertainties , 2007, IEEE Transactions on Automatic Control.

[18]  Mohamed Boutayeb,et al.  Static output feedback stabilization with H/sub /spl infin// performance for linear discrete-time systems , 2005, IEEE Transactions on Automatic Control.

[19]  P. Apkarian,et al.  Nonsmooth H ∞ synthesis , 2005 .

[20]  Pierre Apkarian,et al.  Continuous-time analysis, eigenstructure assignment, and H2 synthesis with enhanced linear matrix inequalities (LMI) characterizations , 2001, IEEE Trans. Autom. Control..

[21]  James Lam,et al.  Static Output Feedback Stabilization: An ILMI Approach , 1998, Autom..

[22]  Massimiliano Mattei Reply to comments on ‘Sufficient conditions for the synthesis of H∞ fixed‐order controllers’ , 2004 .

[23]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[24]  Carlos E. de Souza,et al.  A necessary and sufficient condition for output feedback stabilizability , 1995, Autom..

[25]  A. T. Neto,et al.  Stabilization via static output feedback , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[26]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[27]  J. Geromel,et al.  Convex analysis of output feedback control problems: robust stability and performance , 1996, IEEE Trans. Autom. Control..

[28]  Dimitri Peaucelle,et al.  Some Conditions for Convexifying Static H∞ Control Problems* , 2011 .

[29]  Kamel Dabboussi,et al.  H2 static output feedback stabilization of linear continuous-time systems with a dilated LMI approach , 2009, 2009 6th International Multi-Conference on Systems, Signals and Devices.

[30]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[31]  Vojtech Veselý,et al.  A necessary and sufficient condition for static output feedback stabilizability of linear discrete-time systems , 2003, Kybernetika.

[32]  Alexandre Trofino,et al.  Sufficient LMI conditions for output feedback control problems , 1999, IEEE Trans. Autom. Control..

[33]  Peng Shi,et al.  H ∞ output-feedback control for switched linear discrete-time systems with time-varying delays , 2007, Int. J. Control.

[34]  Laurent El Ghaoui,et al.  Rank Minimization under LMI constraints: A Framework for Output Feedback Problems , 2007 .

[35]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1996, Proceedings of Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design.