Interpreting non-random signatures in biomedical signals with Lempel–Ziv complexity
暂无分享,去创建一个
[1] Maria V. Sanchez-Vives,et al. Application of Lempel–Ziv complexity to the analysis of neural discharges , 2003, Network.
[2] Tanya Schmah,et al. Surrogate Data Pathologies and the False-positive rejection of the Null Hypothesis , 2001, Int. J. Bifurc. Chaos.
[3] Abraham Lempel,et al. On the Complexity of Finite Sequences , 1976, IEEE Trans. Inf. Theory.
[4] Radhakrishnan Nagarajan,et al. Surrogate testing of linear feedback processes with non-Gaussian innovations , 2005, cond-mat/0510517.
[5] Bruno O. Shubert,et al. Random variables and stochastic processes , 1979 .
[6] Timmer,et al. What can Be inferred from surrogate data testing? , 2000, Physical review letters.
[7] Schuster,et al. Easily calculable measure for the complexity of spatiotemporal patterns. , 1987, Physical review. A, General physics.
[8] Lisheng Xu,et al. Arrhythmic Pulses Detection Using Lempel-Ziv Complexity Analysis , 2006, EURASIP J. Adv. Signal Process..
[9] P. Rapp,et al. The algorithmic complexity of neural spike trains increases during focal seizures , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[10] Thomas Schreiber,et al. Surrogate data for non-stationary signals , 1999, chao-dyn/9904023.
[11] Tarmo Lipping,et al. Comparison of entropy and complexity measures for the assessment of depth of sedation , 2006, IEEE Transactions on Biomedical Engineering.
[12] Athanasios Papoulis,et al. Probability, Random Variables and Stochastic Processes , 1965 .
[13] M. Hinich,et al. Detecting Nonlinearity in Time Series: Surrogate and Bootstrap Approaches , 2005 .
[14] Jing Hu,et al. Analysis of Biomedical Signals by the Lempel-Ziv Complexity: the Effect of Finite Data Size , 2006, IEEE Transactions on Biomedical Engineering.
[15] José María Amigó,et al. Characterizing spike trains with Lempel-Ziv complexity , 2004, Neurocomputing.
[16] José María Amigó,et al. Estimating the Entropy Rate of Spike Trains via Lempel-Ziv Complexity , 2004, Neural Computation.
[17] Jianfeng Feng,et al. Is partial coherence a viable technique for identifying generators of neural oscillations? , 2004, Biological Cybernetics.
[18] James Theiler,et al. Testing for nonlinearity in time series: the method of surrogate data , 1992 .
[19] Roberto Hornero,et al. Complexity analysis of the magnetoencephalogram background activity in Alzheimer's disease patients. , 2006, Medical engineering & physics.
[20] Rangaraj M. Rangayyan,et al. Biomedical Signal Analysis: A Case-Study Approach , 2001 .
[21] Alfonso M Albano,et al. Phase-randomized surrogates can produce spurious identifications of non-random structure , 1994 .
[22] Schreiber,et al. Improved Surrogate Data for Nonlinearity Tests. , 1996, Physical review letters.
[23] Scott Peltier,et al. Tissue specificity of nonlinear dynamics in baseline fMRI , 2006, Magnetic resonance in medicine.
[24] J. Aubin,et al. Modeling genetic networks from clonal analysis. , 2004, Journal of theoretical biology.
[25] Radhakrishnan Nagarajan,et al. Quantifying physiological data with Lempel-Ziv complexity-certain issues , 2002, IEEE Transactions on Biomedical Engineering.
[26] Jens Timmer,et al. Cross-spectral analysis of physiological tremor and muscle activity , 1998, Biological Cybernetics.
[27] Jinghua Xu,et al. Information transmission in human cerebral cortex , 1997 .
[28] G. W. Snedecor. Statistical Methods , 1964 .
[29] Jan Raethjen,et al. Time Delay and Partial Coherence Analyses to Identify Cortical Connectivities , 2005, Biological Cybernetics.
[30] Jens Timmer,et al. Cross-spectral analysis of physiological tremor and muscle activity , 1998, Biological Cybernetics.
[31] N. Pradhan,et al. Validity of Dimensional Complexity Measures of EEG Signals , 1997 .
[32] Chi Kong Tse,et al. Chaotic dynamics and simulation of Japanese vowel sounds , 2005, Proceedings of the 2005 European Conference on Circuit Theory and Design, 2005..