COMT genotype predicts cortical-limbic D1 receptor availability measured with [11C]NNC112 and PET

A common polymorphism (val158met) in the gene encoding catechol-O-methyltransferase (COMT) has been shown to affect dopamine (DA) tone in cortex and cortical functioning. D1 receptors are the main DA receptors in the cortex, and studies have shown that decreased levels of cortical DA are associated with upregulation of D1 receptor availability, as measured with the positron-emission tomography (PET) radiotracer [11C]NNC112. We compared [11C]NNC 112 binding in healthy volunteers homozygous for the Val allele compared with Met carriers. Subjects were otherwise matched for parameters known to affect [11C]NNC 112 binding. Subjects with Val/Val alleles had significantly higher cortical [11C]NNC 112 binding compared with Met carriers, but did not differ in striatal binding. These results confirm the prominent role of COMT in regulating DA transmission in cortex but not striatum, and the reliability of [11C]NNC 112 as a marker for low DA tone as previously suggested by studies in patients with schizophrenia.

[1]  S S Stensaas,et al.  Autoradiographic Evidence of [3H]SCH 23390 Binding Site; in Human Prefrontal Cortex (Brodmann's Area 9) , 1987, Journal of neurochemistry.

[2]  G. Vauquelin,et al.  Evidence for a widespread dopaminergic innervation of the human cerebral neocortex , 1989, Neuroscience Letters.

[3]  P. Goldman-Rakic,et al.  Autoradiographic comparison of D1-specific binding of [3H]SCH39166 and SCH23390 in the primate cerebral cortex , 1990, Brain Research.

[4]  J. Mazziotta,et al.  MRI‐PET Registration with Automated Algorithm , 1993, Journal of computer assisted tomography.

[5]  Christer Halldin,et al.  Distribution of D1- and D2-Dopamine Receptors, and Dopamine and Its Metabolites in the Human Brain , 1994, Neuropsychopharmacology.

[6]  D. Law-Tho,et al.  Dopamine modulation of synaptic transmission in rat prefrontal cortex: an in vitro electrophysiological study , 1994, Neuroscience Research.

[7]  R. Weinshilboum,et al.  Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. , 1996, Pharmacogenetics.

[8]  CR Yang,et al.  Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  M. Owen,et al.  No evidence for allelic association between schizophrenia and a polymorphism determining high or low catechol O-methyltransferase activity. , 1996, The American journal of psychiatry.

[10]  R. Murray,et al.  Preferential transmission of the high activity allele of COMT in schizophrenia , 1996, Psychiatric genetics.

[11]  D. Pfaff,et al.  Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Allan I. Levey,et al.  Dopamine Axon Varicosities in the Prelimbic Division of the Rat Prefrontal Cortex Exhibit Sparse Immunoreactivity for the Dopamine Transporter , 1998, The Journal of Neuroscience.

[13]  T. Terao,et al.  Association study of a functional catechol-O-methyltransferase gene polymorphism in Japanese schizophrenics , 1998, Neuroscience Letters.

[14]  J Sandell,et al.  Carbon-11-NNC 112: a radioligand for PET examination of striatal and neocortical D1-dopamine receptors. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[15]  J. Seamans,et al.  Developing a Neuronal Model for the Pathophysiology of Schizophrenia Based on the Nature of Electrophysiological Actions of Dopamine in the Prefrontal Cortex , 1999, Neuropsychopharmacology.

[16]  G. Hemmings,et al.  Lack of evidence for association between the COMT locus and schizophrenia. , 1999, Psychiatric genetics.

[17]  R. Roth,et al.  Altered frontal cortical dopaminergic transmission in monkeys after subchronic phencyclidine exposure: involvement in frontostriatal cognitive deficits , 1999, Neuroscience.

[18]  Christer Halldin,et al.  Measurement of Striatal and Extrastriatal Dopamine D1 Receptor Binding Potential With [11C]NNC 112 in Humans: Validation and Reproducibility , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[19]  R. Straub,et al.  Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  D. Durstewitz,et al.  Bidirectional Dopamine Modulation of GABAergic Inhibition in Prefrontal Cortical Pyramidal Neurons , 2001, The Journal of Neuroscience.

[21]  H. Herken,et al.  Catechol‐O ‐methyltransferase gene polymorphism in schizophrenia: evidence for association between symptomatology and prognosis , 2001, Psychiatric genetics.

[22]  A. Sampson,et al.  Dopamine transporter immunoreactivity in monkey cerebral cortex: Regional, laminar, and ultrastructural localization , 2001, The Journal of comparative neurology.

[23]  Osama Mawlawi,et al.  Imaging Human Mesolimbic Dopamine Transmission with Positron Emission Tomography: I. Accuracy and Precision of D2 Receptor Parameter Measurements in Ventral Striatum , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[24]  J. Mallet,et al.  No evidence for linkage between COMT and schizophrenia in a French population , 2001, Psychiatry Research.

[25]  R. V. Van Heertum,et al.  Prefrontal Dopamine D1 Receptors and Working Memory in Schizophrenia , 2002, The Journal of Neuroscience.

[26]  Marc Laruelle,et al.  Dopamine Depletion and In Vivo Binding of PET D1 Receptor Radioligands: Implications for Imaging Studies in Schizophrenia , 2003, Neuropsychopharmacology.

[27]  R. Coppola,et al.  Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. , 2003, Archives of general psychiatry.

[28]  Makoto Tsunoda,et al.  High-performance liquid chromatography-fluorescent assay of catechol-O-methyltransferase activity in rat brain , 2003, Analytical and bioanalytical chemistry.

[29]  B. Lipska,et al.  Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function , 2003, Neuroscience.

[30]  Paul J. Harrison,et al.  Catechol-O-Methyltransferase Inhibition Improves Set-Shifting Performance and Elevates Stimulated Dopamine Release in the Rat Prefrontal Cortex , 2004, The Journal of Neuroscience.

[31]  M. Egan,et al.  Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. , 2004, American journal of human genetics.

[32]  M. Egan,et al.  Effect of Catechol-O-Methyltransferase val158met Genotype on Attentional Control , 2005, The Journal of Neuroscience.

[33]  Hideo Tsukada,et al.  Chronic NMDA Antagonism Impairs Working Memory, Decreases Extracellular Dopamine, and Increases D1 Receptor Binding in Prefrontal Cortex of Conscious Monkeys , 2005, Neuropsychopharmacology.

[34]  Mark Slifstein,et al.  Altered prefrontal dopaminergic function in chronic recreational ketamine users. , 2005, The American journal of psychiatry.

[35]  Lin He,et al.  Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: A large-scale association study plus meta-analysis , 2005, Biological Psychiatry.

[36]  Thomas E. Nichols,et al.  Impact of complex genetic variation in COMT on human brain function , 2006, Molecular Psychiatry.

[37]  M. Laruelle,et al.  [11C]NNC 112 Selectivity for Dopamine D1 and Serotonin 5-HT2A Receptors: A PET Study in Healthy Human Subjects , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[38]  D. Weinberger,et al.  COMT Val158Met polymorphism predicts negative symptoms response to treatment with olanzapine in schizophrenia , 2007, Schizophrenia Research.

[39]  R. P. Maguire,et al.  Consensus Nomenclature for in vivo Imaging of Reversibly Binding Radioligands , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[40]  Margit Burmeister,et al.  SNPs on Chips: The Hidden Genetic Code in Expression Arrays , 2007, Biological Psychiatry.

[41]  P. Buckley,et al.  Catechol O-methyltransferase Val158Met Genotype and Neural Mechanisms Related to Affective Arousal and Regulation , 2008 .