Chiral gold nanoparticles.

Monolayer-protected gold nanoparticles have many appealing physical and chemical properties such as quantum size effects, surface plasmon resonance, and catalytic activity. These hybrid organic-inorganic nanomaterials have promising potential applications as building blocks for nanotechnology, as catalysts, and as sensors. Recently, the chirality of these materials has attracted attention, and application to chiral technologies is an interesting perspective. This minireview deals with the preparation of chiral gold nanoparticles and their chiroptical properties. On the basis of the latter, together with predictions from quantum chemical calculations, we discuss different models that were put forward in the past to rationalize the observed optical activity in metal-based electronic transitions. We furthermore critically discuss these models in view of recent results on the structure determination of some gold clusters as well as ligand-exchange experiments examined by circular dichroism spectroscopy. It is also demonstrated that vibrational circular dichroism can be used to determine the structure of a chiral adsorbate and the way it interacts with the metal. Finally, possible applications of these new chiral materials are discussed.

[1]  R. Murray,et al.  Near-IR luminescence of monolayer-protected metal clusters. , 2005, Journal of the American Chemical Society.

[2]  Vincent M Rotello,et al.  Isomeric control of protein recognition with amino acid- and dipeptide-functionalized gold nanoparticles. , 2008, Chemistry.

[3]  T. Bürgi,et al.  Probing Chiral Nanoparticles and Surfaces by Infrared Spectroscopy , 2006 .

[4]  H. Blaser,et al.  Enantioselective Hydrogenation Using Heterogeneous Modified Catalysts: An Update , 2003 .

[5]  A. Baiker,et al.  VCD spectroscopy of chiral cinchona modifiers used in heterogeneous enantioselective hydrogenation: conformation and binding of non-chiral acids , 2002 .

[6]  A. Strydom,et al.  Specific heat, susceptibility, magnetotransport and thermoelectric power of the Kondo alloys (Ce1−xLax)Cu5In , 2004 .

[7]  Xiaozhen Yang,et al.  Enantioselective hydrogenation of pyruvates over polymer-stabilized and supported platinum nanoclusters , 1999 .

[8]  C. Mcfadden,et al.  Adsorption of Chiral Alcohols on “Chiral” Metal Surfaces , 1996 .

[9]  R. Dasari,et al.  Ultrasensitive chemical analysis by Raman spectroscopy. , 1999, Chemical reviews.

[10]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[11]  M. L. Patil,et al.  Development of new methods toward efficient immobilization of chiral catalysts , 2007 .

[12]  D. Astruc,et al.  "Homeopathic" catalytic activity and atom-leaching mechanism in Miyaura-Suzuki reactions under ambient conditions with precise dendrimer-stabilized Pd nanoparticles. , 2007, Angewandte Chemie.

[13]  Nikolay I. Zheludev,et al.  Asymmetric Transmission of Light and Enantiomerically Sensitive Plasmon Resonance in Planar Chiral Nanostructures , 2007 .

[14]  H. Bönnemann,et al.  Enantioselektive Hydrierung an Platinkolloiden , 1996 .

[15]  Hannu Häkkinen,et al.  Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. , 2006, The journal of physical chemistry. B.

[16]  T. Pakkanen,et al.  Reaction of (S)-BINAP with H4Ru4(CO)12. The First Example of Face-Bridging BINAP Coordination and 100% Stereoselectivity in Formation of a Chiral Tetranuclear Cluster Framework , 2004 .

[17]  R. Widenhoefer Recent developments in enantioselective gold(I) catalysis. , 2008, Chemistry.

[18]  Martin Moskovits,et al.  Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals , 1978 .

[19]  A. Roucoux,et al.  Enantioselective hydrogenation of ethyl pyruvate in biphasic liquid-liquid media by reusable surfactant-stabilized aqueous suspensions of platinum nanoparticles , 2004 .

[20]  Arthur W. Snow,et al.  Colloidal Metal−Insulator−Metal Ensemble Chemiresistor Sensor , 1998 .

[21]  Xiaolin Cao,et al.  Absolute configuration determination of chiral molecules in the solution state using vibrational circular dichroism. , 2003, Chirality.

[22]  T. Hegmann,et al.  Chirality transfer in nematic liquid crystals doped with (S)-naproxen- functionalized gold nanoclusters: an induced circular dichroism study{ , 2008 .

[23]  T. Bürgi,et al.  Chiral 1,1'-binaphthyl-2,2'-dithiol-stabilized gold clusters: size separation and optical activity in the UV-vis. , 2008, Chirality.

[24]  K. Oyaizu,et al.  A novel Decavanadium(V) cluster with a chiral framework: [(O=V)10(μ2-O)9(μ3-O)3(C5H7O2)6] having an approximate C3 symmetry , 1998 .

[25]  Peijun Zhang,et al.  A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices. , 2008, Journal of the American Chemical Society.

[26]  Y. Negishi,et al.  Extremely high stability of glutathionate-protected Au25 clusters against core etching. , 2007, Small.

[27]  T. Bürgi,et al.  Adsorption kinetics of L-glutathione on gold and structural changes during self-assembly: an in situ ATR-IR and QCM study. , 2006, Physical chemistry chemical physics : PCCP.

[28]  James E Hutchison,et al.  Thiol-functionalized undecagold clusters by ligand exchange: synthesis, mechanism, and properties. , 2005, Inorganic chemistry.

[29]  T. Bürgi,et al.  Vibrational circular dichroism of N-acetyl-l-cysteine protected gold nanoparticles. , 2005, Chemical communications.

[30]  A. Hashmi The catalysis gold rush: new claims. , 2005, Angewandte Chemie.

[31]  P. Bouř,et al.  (3R,4S)-4-(4-Fluorophenyl)-3-hydroxymethyl-1-methylpiperidine: conformation and structure monitoring by vibrational circular dichroism. , 2002, The Journal of organic chemistry.

[32]  Rasmita Raval,et al.  From local adsorption stresses to chiral surfaces: (R,R)-tartaric acid on Ni(110). , 2002, Journal of the American Chemical Society.

[33]  T. Bürgi,et al.  Probing chiral interfaces by infrared spectroscopic methods. , 2007, Physical chemistry chemical physics : PCCP.

[34]  T. Keiderling,et al.  Conformation of dimethyl tartrate in solution. Vibrational circular dichroism results , 1980 .

[35]  V. Rotello,et al.  Recognition and stabilization of peptide alpha-helices using templatable nanoparticle receptors. , 2004, Journal of the American Chemical Society.

[36]  J. S. Bradley,et al.  A Kinetic Probe of the Effect of a Stabilizing Polymer on a Colloidal Catalyst: Accelerated Enantioselective Hydrogenation of Ethyl Pyruvate Catalyzed by Poly(vinylpyrrolidone)-Stabilized Platinum Colloids , 1998 .

[37]  Asymmetric Hydrogenation of Methyl Benzoylformate Using Platinum-Carbon Catalysts Modified with Cinchonidine , 1979 .

[38]  J. S. Bradley,et al.  Enantioselective hydrogenation of ethyl pyruvate with colloidal platinum catalysts: the effect of acidity on rate , 1997 .

[39]  H. Bönnemann,et al.  Enantioselective Hydrogenations on Platinum Colloids , 1996 .

[40]  P. Bladon,et al.  Optisch aktive Übergangsmetall-Komplexe: XCX. Optisch reines 3a,4,5,6,7,7a-Hexahydro-2-phenyl-4,7-methano-1H-inden-1-on durch asymmetrische Khand-Reaktion , 1988 .

[41]  Thomas Bürgi,et al.  Chiral N-isobutyryl-cysteine protected gold nanoparticles: preparation, size selection, and optical activity in the UV-vis and infrared. , 2006, Journal of the American Chemical Society.

[42]  R. Naaman,et al.  The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates. , 2006, Physical chemistry chemical physics : PCCP.

[43]  T. Bürgi,et al.  Adsorption of Thiol-Protected Gold Nanoparticles on TiO2 and Their Behavior under UV Light Irradiation , 2008 .

[44]  A. S. K. Hashmi,et al.  Goldrausch in der Katalyse: neue “Claims”† , 2005 .

[45]  H. Vahrenkamp,et al.  Rutheniumhaltige Heterometallcluster durch Aufbau und Metallaustausch , 1986 .

[46]  Hao Qi,et al.  Unprecedented Dual Alignment Mode and Freedericksz Transition in Planar Nematic Liquid Crystal Cells Doped with Gold Nanoclusters , 2008 .

[47]  Konstantins Jefimovs,et al.  Optical activity in subwavelength-period arrays of chiral metallic particles , 2003 .

[48]  R. Murray,et al.  Reaction of Au55(PPh3)12Cl6 with thiols yields thiolate monolayer protected Au75 clusters , 2005 .

[49]  Gabriel Shemer,et al.  Plasmon-resonance-enhanced absorption and circular dichroism. , 2008, Angewandte Chemie.

[50]  T. Bürgi,et al.  L-glutathione chemisorption on gold and acid/base induced structural changes: a PM-IRRAS and time-resolved in situ ATR-IR spectroscopic study. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[51]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[52]  R. Whetten,et al.  On the structure of thiolate-protected Au25. , 2008, Journal of the American Chemical Society.

[53]  P. Reider,et al.  Are heterogeneous catalysts precursors to homogeneous catalysts? , 2001, Journal of the American Chemical Society.

[54]  H. Yao,et al.  Chiroptical Responses of d-/l-Penicillamine-Capped Gold Clusters under Perturbations of Temperature Change and Phase Transfer , 2007 .

[55]  A. Pfaltz,et al.  Immobilization of rhodium complexes at thiolate monolayers on gold surfaces: catalytic and structural studies. , 2005, Journal of the American Chemical Society.

[56]  John M Kelly,et al.  Chiral highly luminescent CdS quantum dots. , 2007, Chemical communications.

[57]  J. Beziat,et al.  Stereoselective reduction of disubstituted aromatics on colloidal rhodium , 1994 .

[58]  Sun,et al.  Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices , 2000, Science.

[59]  J. Kong,et al.  Probing chiral amino acids at sub-picomolar level based on bovine serum albumin enantioselective films coupled with silver-enhanced gold nanoparticles. , 2006, Talanta.

[60]  Michel Mitov,et al.  Long-range structuring of nanoparticles by mimicry of a cholesteric liquid crystal , 2002, Nature materials.

[61]  E. K. Parks,et al.  The structure of Ni39 , 1998 .

[62]  T. Ueda,et al.  Synthesis and Chiroptical Study of D/L-Penicillamine-Capped Silver Nanoclusters , 2007 .

[63]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[64]  L. Nafie Infrared and Raman vibrational optical activity: theoretical and experimental aspects. , 1997, Annual review of physical chemistry.

[65]  H. Fujihara,et al.  Chiral bisphosphine BINAP-stabilized gold and palladium nanoparticles with small size and their palladium nanoparticle-catalyzed asymmetric reaction. , 2003, Journal of the American Chemical Society.

[66]  A. Baiker,et al.  Heterogeneous enantioselective hydrogenation over cinchona alkaloid modified platinum: mechanistic insights into a complex reaction. , 2004, Accounts of chemical research.

[67]  G. Bond Gold: A relatively new catalyst , 2001 .

[68]  Zhiyong Tang,et al.  One‐Dimensional Assemblies of Nanoparticles: Preparation, Properties, and Promise , 2005 .

[69]  Y. Negishi,et al.  Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. , 2005, Journal of the American Chemical Society.

[70]  Hao Qi,et al.  Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles , 2006 .

[71]  H. Nishihara,et al.  Synthesis, single crystal X-ray analysis, and TEM for a single-sized Au11 cluster stabilized by SR ligands: The interface between molecules and particles , 2006 .

[72]  Markku J. Oila,et al.  Chirally modified gold nanoparticles: nanostructured chiral ligands for catalysis , 2006 .

[73]  H. Yao,et al.  Chiral functionalization of optically inactive monolayer-protected silver nanoclusters by chiral ligand-exchange reactions. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[74]  R. Murray,et al.  Gold nanoelectrodes of varied size: transition to molecule-like charging , 1998, Science.

[75]  K. Philippot,et al.  A case for enantioselective allylic alkylation catalyzed by palladium nanoparticles. , 2004, Journal of the American Chemical Society.

[76]  Shaowei Chen,et al.  Surface Manipulation of the Electronic Energy of Subnanometer-Sized Gold Clusters: An Electrochemical and Spectroscopic Investigation , 2003 .

[77]  G. Schmid,et al.  Hexachlorododecakis(Triphenyl‐Phosphine)Pentapentacontagold, Au55[P(C6H5)3]12CL6 , 2007 .

[78]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[79]  Gil Markovich,et al.  Chirality of silver nanoparticles synthesized on DNA. , 2006, Journal of the American Chemical Society.

[80]  H. Vahrenkamp,et al.  Heteronuclear Cobalt Clusters by Metal Exchange , 1978 .

[81]  H. Vahrenkamp,et al.  Chirale PFeCoM-Cluster: Darstellung durch Metallaustausch und Untersuchung der optischen Aktivität , 1983 .

[82]  H. Yao,et al.  Large optical activity of gold nanocluster enantiomers induced by a pair of optically active penicillamines. , 2005, Journal of the American Chemical Society.

[83]  Vibrational circular dichroism , 1976 .

[84]  Tatsuya Tsukuda,et al.  Chiroptical activity of BINAP-stabilized undecagold clusters. , 2006, The journal of physical chemistry. B.

[85]  Peter W. Stephens,et al.  Structural evolution of smaller gold nanocrystals: The truncated decahedral motif , 1997 .

[86]  Nikolay I. Zheludev,et al.  Layered chiral metallic microstructures with inductive coupling , 2001 .

[87]  H. Vahrenkamp,et al.  Heteronucleare Cobaltcluster durch Metall‐Austausch , 1978 .

[88]  T. Bürgi,et al.  Adsorption kinetics, orientation, and self-assembling of N-acetyl-L-cysteine on gold: a combined ATR-IR, PM-IRRAS, and QCM study. , 2005, The journal of physical chemistry. B.

[89]  Alexander Baev,et al.  A quantum chemical approach to the design of chiral negative index materials. , 2007, Optics express.

[90]  J. A. Reyes-Nava,et al.  Chirality, defects, and disorder in gold clusters , 2003 .

[91]  H. Vahrenkamp,et al.  Aufbau Germylidin-verbrückter Drei- und Vierkerncluster , 1985 .

[92]  C. Brinker,et al.  Self-Assembly of Ordered, Robust, Three-Dimensional Gold Nanocrystal/Silica Arrays , 2004, Science.

[93]  Shona M. Johnston,et al.  Going beyond the physical: instilling chirality onto the electronic structure of a metal. , 2005, Angewandte Chemie.

[94]  V. Rotello,et al.  Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. , 2006, Journal of the American Chemical Society.

[95]  Thomas Bürgi,et al.  Chiral inversion of gold nanoparticles. , 2008, Journal of the American Chemical Society.

[96]  J. Widegren,et al.  A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions , 2003 .

[97]  M. Amiji,et al.  Poly(ethylene glycol)-modified thiolated gelatin nanoparticles for glutathione-responsive intracellular DNA delivery. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[98]  Robert L. Whetten,et al.  Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound , 1998 .

[99]  Henri Patin,et al.  Reduced transition metal colloids: a novel family of reusable catalysts? , 2002, Chemical reviews.

[100]  S. M. Barlow,et al.  Nanoscale insights in the creation and transfer of chirality in amino acid monolayers at defined metal surfaces , 2008 .

[101]  T. Bürgi,et al.  Synthesis and Characterization of Tetrahedral Ru3O Clusters with Intrinsic Framework Chirality: A Chiral Probe of the Intact Cluster Catalysis Concept† , 2005 .

[102]  V. Reddy Synthesis, characterization, and reactivity of a novel ruthenium carbonyl cluster containing tri-O-benzyl-D-glucal as a chiral carbohydrate ligand , 2006 .

[103]  K. Griebenow,et al.  The conformation of tetraalanine in water determined by polarized Raman, FT-IR, and VCD spectroscopy. , 2004, Journal of the American Chemical Society.

[104]  K. Philippot,et al.  Synthesis, characterization and catalytic reactivity of ruthenium nanoparticles stabilized by chiral N-donor ligands , 2006 .

[105]  J. Widegren,et al.  A review of soluble transition-metal nanoclusters as arene hydrogenation catalysts , 2003 .

[106]  F. Cotton,et al.  Catalysis by di- and polynuclear metal cluster complexes , 1998 .

[107]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[108]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[109]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[110]  R. Murray,et al.  Heterophase ligand exchange and metal transfer between monolayer protected clusters. , 2003, Journal of the American Chemical Society.

[111]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[112]  P. Provencio,et al.  Etching and aging effects in nanosize Au clusters investigated using high-resolution size-exclusion chromatography , 2003 .

[113]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[114]  G. Bond The early history of catalysis by gold , 2008 .

[115]  E. Fernández,et al.  Gold(0) nanoparticles for selective catalytic diboration. , 2008, Angewandte Chemie.

[116]  Taihua Li,et al.  Circular dichroism study of chiral biomolecules conjugated with silver nanoparticles , 2004 .

[117]  F. D. Guerville,et al.  Fingerprint patterning of solid nanoparticles embedded in a cholesteric liquid crystal , 2004 .

[118]  S. Stiriba,et al.  Unprecedented stereoselective synthesis of catalytically active chiral Mo3CuS4 clusters. , 2006, Chemistry.

[119]  J. A. Reyes-Nava,et al.  Chirality in bare and passivated gold nanoclusters , 2002, physics/0203078.

[120]  Christy L. Haynes,et al.  Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy † , 2003 .

[121]  A. Depristo,et al.  Structures and energetics of Ni24–Ni55 clusters , 1996 .