OBJECTIVE DELINEATION OF LAHAR-INUNDATION HAZARD ZONES

A new method of delineating lahar hazard zones in valleys that head on volcano flanks provides a rapid, objective, reproducible alternative to traditional methods. The rationale for the method derives from scaling analyses of generic lahar paths and statistical analyses of 27 lahar paths documented at nine volcanoes. Together these analyses yield semiempirical equations that predict inundated valley cross-sectional areas (A) and planimetric areas (B) as functions of lahar volume (V). The predictive equations (A = 0.05V 2/3 and B = 200V 2/3 ) provide all information necessary to calculate and plot in

[1]  S. Schilling Copies of this report can be purchased from: , 1996 .

[2]  R. Iverson,et al.  U. S. Geological Survey , 1967, Radiocarbon.

[3]  James K. Crowley,et al.  MAPPING HYDROTHERMALLY ALTERED ROCKS ON MOUNT RAINIER, WASHINGTON, WITH AIRBORNE VISIBLE/INFRARED IMAGING SPECTROMETER (AVIRIS) DATA , 1997 .

[4]  Richard M. Iverson,et al.  Debris-flow mobilization from landslides , 1997 .

[5]  J. Costa Hydraulic Modeling for Lahar Hazards at Cascades Volcanoes , 1997 .

[6]  J. Vallance,et al.  The Osceola Mudflow from Mount Rainier: Sedimentology and hazard implications of a huge clay-rich debris flow , 1997 .

[7]  J. Major Experimental studies of deposition by debris flows: process, characteristics of deposits, and effects of pore-fluid pressure , 1996 .

[8]  T. Pierson,et al.  Flow characteristics of large eruption-triggered debris flows at snow-clad volcanoes: constraints for debris-flow models , 1995 .

[9]  J. Vallance,et al.  Sedimentology, Behavior, and Hazards of Debris Flows at Mount Rainier, Washington , 1992 .

[10]  Robert K. Mark,et al.  Statistical and Simulation Models for Mapping Debris-Flow Hazard , 1995 .

[11]  J. Vallance,et al.  Debris flow, debris avalanche and flood hazards at and downstream from Mount Rainier, Washington , 1995 .

[12]  J. Walder,et al.  Rapid Geomorphic Change Caused by Glacial Outburst Floods and Debris Flows along Tahoma Creek, Mount Rainier, Washington, U.S.A. , 1994 .

[13]  J. Vallance,et al.  A voluminous avalanche-induced lahar from Citlaltépetl volcano, Mexico: Implications for hazard assessment , 1993 .

[14]  M. Pareschi,et al.  Numerical simulation of some lahars from Mount St. Helens , 1992 .

[15]  S. Self,et al.  A comparison of pyroclastic flow and debris avalanche mobility , 1992 .

[16]  R. Janda,et al.  Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars , 1990 .

[17]  G. Weir,et al.  A general model for Mt. Ruapehu lahars , 1990 .

[18]  R. Solidum,et al.  Anatomy and behaviour of a post-eruptive rain lahar triggered by a typhoon on Mayon volcano, Philippines , 1989 .

[19]  John B. Rundle,et al.  Derivation of the complete Gutenberg‐Richter magnitude‐frequency relation using the principle of scale invariance , 1989 .

[20]  K. Rodolfo Origin and early evolution of lahar channel at Mabinit, Mayon Volcano, Philippines , 1989 .

[21]  S. Savage,et al.  The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.

[22]  R. Hansen,et al.  SIMULATION OF THREE LAHARS IN THE MOUNT ST. HELENS AREA, WASHINGTON USING A ONE-DIMENSIONAL, UNSTEADY-STATE STREAMFLOW MODEL , 1988 .

[23]  S. K. Jenson,et al.  Extracting topographic structure from digital elevation data for geographic information-system analysis , 1988 .

[24]  L. Fairchild The importance of lahar initiation processes , 1987 .

[25]  B. Voight,et al.  Sedimentology and Clast Orientations of the 18 May 1980 Southwest-Flank Lahars, Mount St. Helens, Washington , 1986 .

[26]  K. M. Scott,et al.  Downstream dilution of a lahar : transition from debris flow to hyperconcentrated streamflow. , 1985 .

[27]  Thomas C. Pierson,et al.  Initiation and flow behavior of the 1980 Pine Creek and Muddy River lahars, Mount St. Helens, Washington , 1985 .

[28]  C. Hupp,et al.  Magnitude and frequency of debris flows, and areas of hazard on Mount Shasta, Northern California , 1985 .

[29]  L. Siebert Large volcanic debris avalanches: Characteristics of source areas, deposits, and associated eruptions , 1984 .

[30]  T. Pierson,et al.  The 1980 Polallie Creek debris flow and subsequent dam-break flood, East Fork Hood River basin, Oregon , 1984 .

[31]  M C Malin,et al.  Computer-Assisted Mapping of Pyroclastic Surges , 1982, Science.

[32]  D. R. Crandell,et al.  Postglacial volcanic deposits at Mount Baker, Washington, and potential hazards from future eruptions , 1978 .

[33]  C. T. Haan,et al.  Statistical Methods In Hydrology , 1977 .

[34]  D. R. Crandell,et al.  Technique and rationale of volcanic-hazards appraisals in the Cascade Range, northwestern United States , 1974 .

[35]  R. Curry OBSERVATION OF ALPINE MUDFLOWS IN THE TENMILE RANGE, CENTRAL COLORADO , 1966 .

[36]  F. Henderson Open channel flow , 1966 .

[37]  H. H. Waldron,et al.  A Recent volcanic mudflow of exceptional dimensions from Mount Rainier, Washington , 1956 .