An Eco-routing algorithm for HEVs under traffic conditions

An extension of the bi-level optimization for the energy management of hybrid electric vehicles (HEVs) proposed in Le Rhun et al. (2019a) to the eco-routing problem is presented. Using the knowledge of traffic conditions over the entire road network, we search both the optimal path and state of charge trajectory. This problem results in finding the shortest path on a weighted graph whose nodes are (position, state of charge) pairs for the vehicle, the edge cost being evaluated thanks to the cost maps from optimization at the 'micro' level of a bi-level decomposition. The error due to the discretization of the state of charge is proven to be linear if the cost maps are Lipschitz. The classical A * algorithm is used to solve the problem, with a heuristic based on a lower bound of the energy needed to complete the travel. The eco-routing method is validated by numerical simulations and compared to the fastest path on a synthetic road network.