Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games

Parameterised Boolean Equation Systems (PBESs) are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal mu-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then solving the game. Practical game solvers exist, but the instantiation step is the bottleneck. We enhance the instantiation in two steps. First, we transform the PBES to a Parameterised Parity Game (PPG), a PBES with each equation either conjunctive or disjunctive. Then we use LTSmin, that offers transition caching, efficient storage of states and both distributed and symbolic state space generation, for generating the game graph. To that end we define a language module for LTSmin, consisting of an encoding of variables with parameters into state vectors, a grouped transition relation and a dependency matrix to indicate the dependencies between parts of the state vector and transition groups. Benchmarks on some large case studies, show that the method speeds up the instantiation significantly and decreases memory usage drastically.

[1]  Jaco van de Pol,et al.  State Space Reduction of Linear Processes Using Control Flow Reconstruction , 2009, ATVA.

[2]  Jaco van de Pol,et al.  1 Motivation : A Modular , High-Performance Model Checker , 2010 .

[3]  Colin Stirling,et al.  Modal Logics and mu-Calculi: An Introduction , 2001, Handbook of Process Algebra.

[4]  Tim A. C. Willemse,et al.  Analysing the Control Software of the Compact Muon Solenoid Experiment at the Large Hadron Collider , 2011, FSEN.

[5]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[6]  Sander J. J. Leemans,et al.  Formalising and analysing the control software of the Compact Muon Solenoid Experiment at the Large Hadron Collider , 2011, Sci. Comput. Program..

[7]  Oliver Friedmann,et al.  Solving Parity Games in Practice , 2009, ATVA.

[8]  Stefan Edelkamp,et al.  Solving µ-Calculus Parity Games by Symbolic Planning , 2009, MoChArt.

[9]  Tim A. C. Willemse,et al.  Instantiation for Parameterised Boolean Equation Systems , 2008, ICTAC.

[10]  Marcin Jurdzinski,et al.  Small Progress Measures for Solving Parity Games , 2000, STACS.

[11]  Jaco van de Pol,et al.  Symbolic Reachability for Process Algebras with Recursive Data Types , 2008, ICTAC.

[12]  Jaco van de Pol,et al.  A Multi-Core Solver for Parity Games , 2008, Electron. Notes Theor. Comput. Sci..

[13]  Tim A. C. Willemse,et al.  Verification of reactive systems via instantiation of Parameterised Boolean Equation Systems , 2011, Inf. Comput..

[14]  Jaco van de Pol,et al.  Equivalence Checking for Infinite Systems Using Parameterized Boolean Equation Systems , 2007, CONCUR.

[15]  Jaco van de Pol,et al.  Bridging the Gap between Enumerative and Symbolic Model Checkers , 2009 .

[16]  van Mj Muck Weerdenburg,et al.  Efficient rewriting techniques , 2009 .

[17]  Jan Friso Groote,et al.  Model-checking processes with data , 2005, Sci. Comput. Program..

[18]  René Mazala,et al.  Infinite Games , 2001, Automata, Logics, and Infinite Games.

[19]  Jaco van de Pol,et al.  A Database Approach to Distributed State-Space Generation , 2008, J. Log. Comput..

[20]  Wieslaw Zielonka,et al.  Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees , 1998, Theor. Comput. Sci..

[21]  Jan Friso Groote,et al.  Parameterised boolean equation systems , 2005, Theor. Comput. Sci..