SOME RECENT ADVANCES IN THE MATHEMATICS OF FINITE ELEMENTS

Publisher Summary This chapter discusses the mathematical theory of finite element methods. It also discusses the Sobolev spaces and variational formulation of elliptic boundary value problems, nodal finite element method, abstract finite element method, and nonlinear elliptic problems and time dependent problems. It is well known that the finite element method is a special case of the Ritz–Galerkin method. The classical Ritz approach has two great shortcomings: (1) in practice, construction of the basis functions is only possible for some special domains: (2) the corresponding Ritz matrices are full matrices, and are very often, for simple problems, catastrophically ill-conditioned. The crucial difference between the finite element method and the classical Ritz–Galerkin technique lie in the construction of the basis functions. In the finite element method, the basis functions for general domains can easily be computed. The main feature of these basis functions is that they vanish over all but a fixed number of the elements into which the given domain is divided. This property causes the Ritz matrices to be sparse band matrices, and the resulting Ritz process is stable. There are in addition to the Ritz–Galerkin method many other direct variational methods, and the differences among these stem from the variational principles used.

[1]  P. G. Ciarlet,et al.  General lagrange and hermite interpolation in Rn with applications to finite element methods , 1972 .

[2]  F. Bogner,et al.  The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulae , 1965 .

[3]  B. Irons,et al.  Engineering applications of numerical integration in stiffness methods. , 1966 .

[4]  Gilbert Strang,et al.  THE FINITE ELEMENT METHOD AND APPROXIMATION THEORY , 1971 .

[5]  E. Kosko,et al.  A HIGH PRECISION TRIANGULAR PLATE-BENDING ELEMENT, , 1968 .

[6]  J. Bramble,et al.  Triangular elements in the finite element method , 1970 .

[7]  M. Zlámal,et al.  Convergence of a finite element procedure for solving boundary value problems of the fourth order , 1970 .

[8]  K. Bell A refined triangular plate bending finite element , 1969 .

[9]  James H. Bramble,et al.  Least Squares Methods for 2mth Order Elliptic Boundary-Value Problems , 1971 .

[10]  Gilbert Strang,et al.  Approximation in the finite element method , 1972 .

[11]  J. Nitsche,et al.  Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens , 1968 .

[12]  J. H. Bramble,et al.  Bounds for a class of linear functionals with applications to Hermite interpolation , 1971 .

[13]  A. Ženíšek Interpolation polynomials on the triangle , 1970 .

[14]  P. G. Ciarlet,et al.  Numerical methods of high-order accuracy for nonlinear boundary value problems , 1969 .

[15]  J. Bramble,et al.  Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .

[16]  R. Varga,et al.  Piecewise Hermite interpolation in one and two variables with applications to partial differential equations , 1968 .

[17]  Miloš Zlámal,et al.  On the finite element method , 1968 .

[18]  On a semi-variational method for parabolic equations. I , 1972 .

[19]  M. Zlámal Curved Elements in the Finite Element Method. I , 1973 .

[20]  J. Bramble,et al.  ON THE NUMERICAL SOLUTION OF ELLIPTIC BOUNDARY VALUE PROBLEMS BY LEAST SQUARES APPROXIMATION OF THE DATA , 1971 .

[21]  Miloš Zlámal,et al.  The finite element method in domains with curved boundaries , 1973 .

[22]  J. Cea Approximation variationnelle des problèmes aux limites , 1964 .

[23]  J. Nitsche,et al.  Lineare spline-funktionen und die methoden von ritz für elliptische randwertprobleme , 1970 .

[24]  J. Douglas,et al.  Galerkin Methods for Parabolic Equations , 1970 .

[25]  Hermann Schaefer,et al.  Latteninterpolation bei einer Funktion von zwei Veränderlichen , 1963 .

[26]  Ivo Babuška,et al.  Approximation by Hill functions. II. , 1970 .

[27]  James H. Bramble,et al.  Least squares methods for 2th order elliptic boundary-value problems , 1971 .

[28]  Philippe G. Ciarlet,et al.  Multipoint Taylor formulas and applications to the finite element method , 1971 .

[29]  J. Bramble,et al.  Rayleigh‐Ritz‐Galerkin methods for dirichlet's problem using subspaces without boundary conditions , 1970 .

[30]  Garry M. Lindberg,et al.  Finite element analysis of plates with curved edges , 1972 .