A comparison of duality and energy a posteriori estimates for L∞(0, T;L2(Ω)) in parabolic problems

We use the elliptic reconstruction technique in combination with a duality approach to prove a posteriori error estimates for fully discrete backward Euler scheme for linear parabolic equations. As an application, we combine our result with the residual based estimators from the a posteriori estimation for elliptic problems to derive space-error indicators and thus a fully practical version of the estimators bounding the error in the L∞(0,T; L2(Ω)) norm. These estimators, which are of optimal order, extend those introduced by Eriksson and Johnson in 1991 by taking into account the error induced by the mesh changes and allowing for a more flexible use of the elliptic estimators. For comparison with previous results we derive also an energy-based a posteriori estimate for the L∞(0,T; L2(Ω))-error which simplifies a previous one given by Lakkis and Makridakis in 2006. We then compare both estimators (duality vs. energy) in practical situations and draw conclusions.

[1]  Katja Bachmeier,et al.  Finite Elements Theory Fast Solvers And Applications In Solid Mechanics , 2017 .

[2]  A. Schmidt,et al.  Design and convergence analysis for an adaptive discretization of the heat equation , 2012 .

[3]  O. Lakkis,et al.  Gradient recovery in adaptive finite-element methods for parabolic problems , 2009, 0905.2764.

[4]  Sören Bartels,et al.  Quasi-optimal and robust a posteriori error estimates in L∞(L2) for the approximation of Allen-Cahn equations past singularities , 2011, Math. Comput..

[5]  Alan Demlow,et al.  Convergence and quasi-optimality of an adaptive finite element method for controlling L2 errors , 2011, Numerische Mathematik.

[6]  Omar Lakkis,et al.  A Posteriori Error Control for Discontinuous Galerkin Methods for Parabolic Problems , 2008, SIAM J. Numer. Anal..

[7]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .

[8]  Alan Demlow,et al.  Sharply local pointwise a posteriori error estimates for parabolic problems , 2010, Math. Comput..

[9]  O. Lakkis,et al.  A posteriori error bounds for discontinuous Galerkin methods for quasilinear parabolic problems , 2010, 1001.2935.

[10]  Sébastien Meunier,et al.  A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems , 2009 .

[11]  Alan Demlow,et al.  A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems , 2007, SIAM J. Numer. Anal..

[12]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[13]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[14]  Omar Lakkis,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[15]  Ricardo H. Nochetto,et al.  A posteriori error estimates for the Crank-Nicolson method for parabolic equations , 2005, Math. Comput..

[16]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[17]  Christine Bernardi,et al.  A posteriori analysis of the finite element discretization of some parabolic equations , 2004, Math. Comput..

[18]  A. Schmidt,et al.  Design of Adaptive Finite Element Software , 2005 .

[19]  Rüdiger Verfürth,et al.  A posteriori error analysis of the fully discretized time-dependent Stokes equations , 2004 .

[20]  Jia Feng,et al.  An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..

[21]  Rüdiger Verfürth,et al.  A posteriori error estimates for finite element discretizations of the heat equation , 2003 .

[22]  Ricardo H. Nochetto,et al.  Local a posteriori error estimates and adaptive control of pollution effects , 2003 .

[23]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[24]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[25]  Javier de Frutos,et al.  Postprocessing the Linear Finite Element Method , 2002, SIAM J. Numer. Anal..

[26]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[27]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[28]  Bosco Garc,et al.  Postprocessing the Galerkin Method: The Finite-Element Case , 1999 .

[29]  Edriss S. Titi,et al.  Postprocessing the Galerkin Method: The Finite-Element Case , 1999, SIAM J. Numer. Anal..

[30]  M. Picasso Adaptive finite elements for a linear parabolic problem , 1998 .

[31]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[32]  A Review of A Posteriori Error Estimation , 1996 .

[33]  Igor Kossaczký A recursive approach to local mesh refinement in two and three dimensions , 1994 .

[34]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[35]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[36]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[37]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[38]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .

[39]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .