Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes

We present a unified framework for resonant absorption in periodic arrays of high index semiconductor nanowires that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes, as array density transitions from sparse to dense. Full dispersion relations are calculated for each mode at varying illumination angles using the eigenvalue equation for leaky waveguide modes of an infinite dielectric cylinder. The dispersion relations along with symmetry arguments explain the selectivity of mode excitation and spectral red-shifting of absorption for illumination parallel to the nanowire axis in comparison to perpendicular illumination. Analysis of photonic crystal band dispersion for varying array density illustrates that the modes responsible for resonant nanowire absorption emerge from the leaky waveguide modes.

[1]  Rusli,et al.  Design guidelines for slanting silicon nanowire arrays for solar cell application , 2013 .

[2]  Zongfu Yu,et al.  Semiconductor nanowire optical antenna solar absorbers. , 2010, Nano letters.

[3]  C. Poulton,et al.  Modal analysis of enhanced absorption in silicon nanowire arrays. , 2011, Optics express.

[4]  Harry A Atwater,et al.  Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation. , 2014, Optics Express.

[5]  Zhiyong Fan,et al.  Ordered arrays of dual-diameter nanopillars for maximized optical absorption. , 2010, Nano letters.

[6]  P. Spinelli,et al.  Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators , 2012, Nature Communications.

[7]  Charles M Lieber,et al.  Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design. , 2012, Nano letters.

[8]  B. Witzigmann,et al.  Dispersion, wave propagation and efficiency analysis of nanowire solar cells. , 2009, Optics express.

[9]  C. Poulton,et al.  Optimizing Photovoltaic Charge Generation of Nanowire Arrays: A Simple Semi-Analytic Approach , 2014, 1412.5224.

[10]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[11]  J. Rivas,et al.  Nanowire antenna absorption probed with time-reversed fourier microscopy. , 2014, Nano letters.

[12]  Otto L Muskens,et al.  Design of light scattering in nanowire materials for photovoltaic applications. , 2008, Nano letters.

[13]  Long Wen,et al.  Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells , 2011 .

[14]  A. Chutinan,et al.  Light trapping and absorption optimization in certain thin-film photonic crystal architectures , 2008 .

[15]  Hongqi Xu,et al.  Efficient light management in vertical nanowire arrays for photovoltaics. , 2013, Optics express.

[16]  Yiling Yu,et al.  Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures. , 2012, Optics express.

[17]  Elif Ertekin,et al.  Equilibrium limits of coherency in strained nanowire heterostructures , 2005 .

[18]  Linyou Cao,et al.  Engineering light absorption in semiconductor nanowire devices. , 2009, Nature materials.

[19]  Paul Steinvurzel,et al.  Multicolored vertical silicon nanowires. , 2011, Nano letters.

[20]  Connie J. Chang-Hasnain,et al.  Critical diameter for III-V nanowires grown on lattice-mismatched substrates , 2007 .

[21]  M. Povinelli,et al.  Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. , 2009, Optics express.

[22]  Dim-Lee Kwong,et al.  Design guidelines of periodic Si nanowire arrays for solar cell application , 2009 .

[23]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[24]  Cédric Vandenbem,et al.  Mie resonances of dielectric spheres in face-centered cubic photonic crystals. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  S. John,et al.  Solar power conversion efficiency in modulated silicon nanowire photonic crystals , 2012 .

[26]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[27]  G. Grzela Directional light emission and absorption by semiconductor nanowires , 2013 .

[28]  Nathan S. Lewis,et al.  Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes , 2013 .

[29]  A. Boudrioua Optical Waveguide Theory , 2010 .

[30]  Paul W. Leu,et al.  Tunable and selective resonant absorption in vertical nanowires. , 2012, Optics letters.

[31]  Ray R. LaPierre,et al.  Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell , 2011 .

[32]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.