Oxidation Behaviors of Si/Al Pack Cementation Coated Mo–3Si–1B Alloys at Various Temperatures

[1]  K. Baik,et al.  Growth kinetics and isothermal oxidation behavior of a Si pack cementation-coated Mo-Si-B alloy , 2019, Applied Surface Science.

[2]  Xu Chen,et al.  Evolution of Microstructures and Properties in AlxCrFeMn0.8Ni2.1 HEAs , 2019, Metals and Materials International.

[3]  Young Seok Kim,et al.  Chemical evolution-induced strengthening on AlCoCrNi dual-phase high-entropy alloy with high specific strength , 2019, Journal of Alloys and Compounds.

[4]  P. Liaw,et al.  Optimization of B2/L21 hierarchical precipitate structure to improve creep resistance of a ferritic Fe-Ni-Al-Cr-Ti superalloy via thermal treatments , 2019, Scripta Materialia.

[5]  Minkyu Kim,et al.  Oxidation Behavior of MoSi2-Coated TZM Alloys during Isothermal Exposure at High Temperatures , 2018, Coatings.

[6]  Daniel B. Miracle,et al.  Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr , 2018 .

[7]  Ping Zhang,et al.  Deposition and oxidation behavior of Mo(Si,Al)2/MoB layered coatings on TZM alloy , 2017 .

[8]  J. Das,et al.  High temperature oxidation response of Al/Ce doped Mo–Si–B composites , 2017 .

[9]  D. Schliephake,et al.  Enhanced Oxidation Resistance of Mo–Si–B–Ti Alloys by Pack Cementation , 2017, Oxidation of Metals.

[10]  W. Lijie,et al.  Effects of Y2O3/Y on Si-B co-deposition coating prepared through HAPC method on pure molybdenum , 2016 .

[11]  J. Perepezko,et al.  Viscosity control of borosilica by Fe doping in Mo–Si–B environmentally resistant alloys , 2015 .

[12]  D. Schliephake,et al.  Mechanisms of oxide scale formation on yttrium-alloyed Mo–Si–B containing fine-grained microstructure , 2015 .

[13]  D. Schliephake,et al.  Oxidation mechanisms of lanthanum-alloyed Mo–Si–B , 2014 .

[14]  G. W. Young,et al.  One-dimensional approach to modeling damage evolution in galvanic corrosion , 2014 .

[15]  J. Das,et al.  Transient stage oxidation behavior of Mo76Si14B10 alloy at 1150 °C , 2013 .

[16]  R. Sakidja,et al.  Influence of minor Fe addition on the oxidation performance of Mo–Si–B alloys , 2012 .

[17]  P. Berthod,et al.  On the oxidation mechanism of niobium-base in situ composites , 2012 .

[18]  S. Yi,et al.  Oxidation behaviors of Nb–Si–B ternary alloys at 1100 °C under ambient atmosphere , 2012 .

[19]  L. Gang,et al.  Microstructure and oxidation resistance behavior of lanthanum oxide-doped Mo–12Si–8.5B Alloys , 2012 .

[20]  P. Tsakiropoulos,et al.  Study of the role of Hf, Mo and W additions in the microstructure of Nb–20Si silicide based alloys , 2011 .

[21]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[22]  S. Majumdar,et al.  Oxidation behavior of MoSi2 and Mo(Si, Al)2 coated Mo–0.5Ti–0.1Zr–0.02C alloy , 2011 .

[23]  R. Sakidja,et al.  Oxidation-resistant coatings for ultra-high-temperature refractory Mo-based alloys , 2009 .

[24]  P. Tsakiropoulos,et al.  Study of the role of Al, Cr and Ti additions in the microstructure of Nb–18Si–5Hf base alloys , 2010 .

[25]  J. Perepezko The Hotter the Engine, the Better , 2009, Science.

[26]  R. Sakidja,et al.  Transient oxidation of Mo–Si–B alloys: Effect of the microstructure size scale , 2009 .

[27]  M. Kramer,et al.  Characterization and oxidation behavior of silicide coating on multiphase Mo–Si–B alloy , 2008 .

[28]  M. Böning,et al.  Mechanically alloyed Mo–Si–B alloys with a continuous α-Mo matrix and improved mechanical properties , 2008 .

[29]  L. Peng,et al.  Ultra-high temperature Mo–Si–B alloys — Synthesis, microstructural and mechanical characterization , 2008 .

[30]  R. Sakidja,et al.  Aluminum Pack Cementation on Mo–Si–B Alloys Kinetics and Lifetime Prediction , 2007 .

[31]  W. Sloof,et al.  Effect of reactive element oxide inclusions on the growth kinetics of protective oxide scales , 2007 .

[32]  R. Sakidja,et al.  Aluminum Pack Cementation on MoSiB Alloys , 2006 .

[33]  K. Kumar,et al.  Monotonic and cyclic crack growth response of a Mo–Si–B alloy , 2006 .

[34]  K. Kumar,et al.  High temperature compressive flow behavior of a Mo–Si–B solid solution alloy , 2006 .

[35]  M. Kramer,et al.  Microstructure and oxidation behavior of Nb–Mo–Si–B alloys , 2006 .

[36]  R. Sakidja,et al.  Synthesis of oxidation resistant silicide coatings on Mo¿Si¿B alloys , 2005 .

[37]  D. R. Johnson,et al.  Oxidation behavior of multiphase Mo–Si–B alloys , 2004 .

[38]  J. Schneibel,et al.  Reducing the thermal expansion anisotropy in Mo5Si3 by Nb and V additions: theory and experiment , 2003 .

[39]  D. Dimiduk,et al.  Mo-Si-B Alloys: Developing a Revolutionary Turbine-Engine Material , 2003 .

[40]  J. H. Westbrook,et al.  Ultrahigh-Temperature Materials for Jet Engines , 2003 .

[41]  N. Nomura,et al.  Thermal expansion, strength and oxidation resistance of Mo/Mo5SiB2 in-situ composites at elevated temperatures , 2003 .

[42]  D. R. Johnson,et al.  Effects of microstructure on the oxidation behavior of multiphase Mo–Si–B alloys , 2003 .

[43]  D. Dimiduk,et al.  Oxidation behavior of αMo–Mo3Si–Mo5SiB2 (T2) three phase system , 2002 .

[44]  M. Kramer,et al.  A Mo–Si–B intermetallic alloy with a continuous α-Mo matrix , 2002 .

[45]  K. Ito,et al.  Physical and mechanical properties of single crystals of the T2 phase in the Mo–Si–B system , 2001 .

[46]  H. Inui,et al.  High-temperature structural intermetallics , 2000 .

[47]  M. Akinc,et al.  Oxide scale formation and isothermal oxidation behavior of Mo–Si–B intermetallics at 600–1000°C , 1999 .