Mobile wavelet method: application to active contour modeling and surface reconstruction

Deterministic hierarchical approaches in image analysis comprise two major sub-classes: the multiresolution approach and the scale-space representation. Both approaches require either a coarse-to-fine exploration of the hierarchical structure, or a careful selection of a single analysis parameter, but neither one takes full advantage of the hierarchical structure (the end result is obtained at only one analysis level). To overcome this limitation, we propose an explicit hierarchical-based model in which any image primitive is expressed as a finite sum of mobile wavelets (MW), which are defined as wavelets whose dilation, translation and amplitude parameters are allowed to vary. This description derives from an adaptive discretization of the continuous, inverse wavelet transform. First, the MW-based representation is used within the framework of active contour modeling. The primitive corresponds to a deformable, parametrized curve expressed as a sum of MWs. The initial curve is refined by updating the three parameters of each MW in order to minimize the intensity gradient along the active contour. Surface reconstruction is also addressed by the MW approach. In this case, the primitive, the intensity function, is expressed as a sum of MW whose associated parameters are estimated from the noisy data by minimizing a regularizing energy functional.

[1]  Marie-Odile Berger Les contours actifs : modélisation, comportement et convergence , 1991 .

[2]  Francoise J. Preteux,et al.  Hierarchical Markov random field models applied to image analysis: a review , 1995, Optics + Photonics.

[3]  Qinghua Zhang,et al.  Using wavelet network in nonparametric estimation , 1997, IEEE Trans. Neural Networks.

[4]  Arnon Cohen,et al.  Ondelettes et traitement numérique du signal , 1992 .

[5]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Baba C. Vemuri,et al.  Multiresolution stochastic hybrid shape models with fractal priors , 1994, TOGS.

[7]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[8]  Nicholas Ayache,et al.  Fast segmentation, tracking, and analysis of deformable objects , 1993, 1993 (4th) International Conference on Computer Vision.

[9]  Youssef El Omary Modèles déformables et Multirésolution pour la détection de contours en traitement d'images , 1994 .

[10]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[11]  Nicolas Rougon Elements pour la reconnaissance de formes tridimensionnelles deformables. Application a l'imagerie biomedicale , 1993 .

[12]  S. Lodha,et al.  WAVELETS: AN ELEMENTARY INTRODUCTION AND EXAMPLES , 1995 .

[13]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Saravajit Sahay Sinha,et al.  Differential properties from adaptive thin-plate splines , 1991, Optics & Photonics.

[15]  Tomaso A. Poggio,et al.  Extensions of a Theory of Networks for Approximation and Learning , 1990, NIPS.

[16]  Hervé Delingette,et al.  Simplex meshes: a general representation for 3D shape reconstruction , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Demetri Terzopoulos,et al.  Multiresolution computation of visible-surface representations , 1984 .

[18]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[20]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Philippe Cinquin,et al.  Dynamic Segmentation: Finding the Edge With Snake Splines , 1991, Curves and Surfaces.

[22]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[23]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[24]  Dimitris N. Metaxas,et al.  Dynamic 3D models with local and global deformations: deformable superquadrics , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[25]  Luis Alvarez,et al.  Axiomes et 'equations fondamentales du traitement d''images , 1992 .