Comparison of UV and high-energy ion irradiation of methanol:ammonia ice
暂无分享,去创建一个
E. Dartois | H. Rothard | Institut d'Astrophysique Spatiale | E. Dartois | A. Domaracka | H. Rothard | Universite Paris Sud | G. M. M. Caro | G. M. Munoz Caro | P. Boduch | A. Domaracka | A. Jimenez-Escobar Centro de Astrobiologia | CNRS-INSU | Institut d'Astrophysique Spatiale Centre de Recherche sur l Ions | les Materiaux et la Photonique CEACNRSENSICAENUniversi Normandie | P. Boduch | I. D. Spatiale | Universite de Paris Sud | G. M. Caro | A. A. C. D. Astrobiologia | les Materiaux et la Photonique | CEACNRSENSICAENUniversite de Caen-Basse Normandie
[1] Scott A. Sandford,et al. Organic Compounds Produced by Photolysis of Realistic Interstellar and Cometary Ice Analogs Containing Methanol , 1995 .
[2] C. Cecchi-Pestellini,et al. Cosmic ray induced photons in dense interstellar clouds , 1992 .
[3] Scott A. Sandford,et al. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues , 2002, Nature.
[4] A. Collura,et al. SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES , 2012 .
[5] J. Nuth,et al. Infrared spectra of proton irradiated ices containing methanol , 1996 .
[6] C. Rogero,et al. New results on thermal and photodesorption of CO ice using the novel InterStellar Astrochemistry Chamber (ISAC) , 2010 .
[7] Y.-J. Chen,et al. Vacuum-UV spectroscopy of interstellar ice analogs - I. Absorption cross-sections of polar-ice molecules , 2014, 1405.7802.
[8] G. Horneck,et al. Origins of Life and Evolution of Biosphere , 1998 .
[9] J. Ziegler,et al. SRIM – The stopping and range of ions in matter (2010) , 2010 .
[10] M. Moore,et al. Mid- and far-infrared spectroscopic studies of the influence of temperature, ultraviolet photolysis and ion irradiation on cosmic-type ices. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[11] G. Strazzulla,et al. Vibrational spectroscopy of ion-irradiated ices. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[12] S. Hoffmann,et al. VUV spectroscopy and photo-processing of astrochemical ices: an experimental study. , 2006, Faraday discussions.
[13] A. Brack,et al. Amino acids from ultraviolet irradiation of interstellar ice analogues , 2002, Nature.
[14] A. Brack,et al. Precursors of biological cofactors from ultraviolet irradiation of circumstellar/interstellar ice analogues. , 2005, Chemistry.
[15] Scott A. Sandford,et al. Photochemical and thermal evolution of interstellar/precometary ice analogs , 1988 .
[16] Willem A. Schutte,et al. UV-photoprocessing of interstellar ice analogs: New infrared spectroscopic results , 2003 .
[17] J. M. Greenberg,et al. Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium , 2005, Origins of life and evolution of the biosphere.
[18] A. Domaracka,et al. Radiolysis of frozen methanol by heavy cosmic ray and energetic solar particle analogues , 2011 .
[19] Laurent Nahon,et al. The effects of circularly polarized light on amino acid enantiomers produced by the UV irradiation of interstellar ice analogs , 2006 .
[20] J. Greenberg,et al. Cosmic ray induced explosive chemical desorption in dense clouds , 2004 .
[21] E. Dartois,et al. Laboratory simulation of heavy-ion cosmic-ray interaction with condensed CO , 2010 .
[22] Y. Pendleton,et al. The Organic Refractory Material in the Diffuse Interstellar Medium: Mid-Infrared Spectroscopic Constraints , 2002 .
[23] Cyril Szopa,et al. Production of Hexamethylenetetramine in Photolyzed and Irradiated Interstellar Cometary Ice Analogs , 2001 .
[24] E. V. van Dishoeck,et al. THE EFFECT OF H2O ON ICE PHOTOCHEMISTRY , 2010, 1006.2190.
[25] Vacuum-UV spectroscopy of interstellar ice analogs - I. Absorption cross-sections of polar-ice molecules , 2014, 1405.7797.
[26] F. Duvernay,et al. Kinetics of OCNformation from the HNCO + NH 3 solid-state thermal reaction , 2012 .
[27] E. Dartois,et al. A tracer of organic matter of prebiotic interest in space, made from UV and thermal processing of ice mantles , 2009 .
[28] R. Garrod,et al. Formation rates of complex organics in UV irradiated CH3OH-rich ices I: Experiments , 2009, 0908.1169.
[29] G. Baratta,et al. Simultaneous UV- and ion processing of astrophysically relevant ices The case of CH3OH:N2 solid mixtures , 2014 .
[30] E. Dartois,et al. Swift heavy ion irradiation of water ice from MeV to GeV energies - Approaching true cosmic ray compaction , 2013 .
[31] J. M. Greenberg,et al. Photochemical reactions in interstellar grains photolysis of co, NH3, and H2O , 2005, Origins of life and evolution of the biosphere.
[32] M. Moore,et al. Ultraviolet photolysis and proton irradiation of astrophysical ice analogs containing hydrogen cyanide , 2004 .
[33] A. Domaracka,et al. Radiolysis of H2O:CO2 ices by heavy energetic cosmic ray analogs , 2010, 1008.0662.
[34] A. Ciaravella,et al. SOFT X-RAY IRRADIATION OF METHANOL ICE: FORMATION OF PRODUCTS AS A FUNCTION OF PHOTON ENERGY , 2013 .
[35] M. Moore,et al. Energetic processing of laboratory ice analogs: UV photolysis versus ion bombardment , 2001 .
[36] L. S. Farenzena,et al. Heavy ion irradiation of condensed CO2: sputtering and molecule formation , 2009 .
[37] A. Domaracka,et al. Radiolysis of ammonia-containing ices by energetic, heavy, and highly charged ions inside dense astrophysical environments , 2009, 0910.3595.
[38] R. Luna,et al. Refractive index and density of ammonia ice at different temperatures of deposition , 2013 .