Uniform nomenclature for the mitochondrial contact site and cristae organizing system

The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex “mitochondrial contact site and cristae organizing system” and its subunits Mic10 to Mic60.

[1]  A. Chacińska,et al.  Mia40 and MINOS act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1 , 2013, The FEBS journal.

[2]  M. Iijima,et al.  Effects of Fcj1-Mos1 and mitochondrial division on aggregation of mitochondrial DNA nucleoids and organelle morphology , 2013, Molecular biology of the cell.

[3]  Andreas S. Reichert,et al.  APOOL Is a Cardiolipin-Binding Constituent of the Mitofilin/MINOS Protein Complex Determining Cristae Morphology in Mammalian Mitochondria , 2013, PloS one.

[4]  Dietmar Riedel,et al.  STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria , 2013, Proceedings of the National Academy of Sciences.

[5]  T. Langer,et al.  Intramitochondrial Transport of Phosphatidic Acid in Yeast by a Lipid Transfer Protein , 2012, Science.

[6]  Bettina Warscheid,et al.  Role of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane , 2012, Molecular biology of the cell.

[7]  J. Martinou,et al.  Intermembrane Space Proteome of Yeast Mitochondria* , 2012, Molecular & Cellular Proteomics.

[8]  Bettina Warscheid,et al.  Role of MINOS in mitochondrial membrane architecture: cristae morphology and outer membrane interactions differentially depend on mitofilin domains. , 2012, Journal of molecular biology.

[9]  A. Reichert,et al.  The C-terminal domain of Fcj1 is required for formation of crista junctions and interacts with the TOB/SAM complex in mitochondria , 2012, Molecular biology of the cell.

[10]  Martin van der Laan,et al.  Role of MINOS in mitochondrial membrane architecture and biogenesis. , 2012, Trends in cell biology.

[11]  Martin J. Mueller,et al.  Sam50 Functions in Mitochondrial Intermembrane Space Bridging and Biogenesis of Respiratory Complexes , 2012, Molecular and Cellular Biology.

[12]  S. Jakobs,et al.  MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization , 2012, Molecular biology of the cell.

[13]  Ki Lui,et al.  CHCM1/CHCHD6, Novel Mitochondrial Protein Linked to Regulation of Mitofilin and Mitochondrial Cristae Morphology* , 2012, The Journal of Biological Chemistry.

[14]  Matthias Mann,et al.  The mitochondrial contact site complex, a determinant of mitochondrial architecture , 2011, The EMBO journal.

[15]  J. Martinou,et al.  Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. , 2011, Developmental cell.

[16]  W. Kühlbrandt,et al.  Macromolecular organization of ATP synthase and complex I in whole mitochondria , 2011, Proceedings of the National Academy of Sciences.

[17]  A. M. van der Bliek,et al.  A novel mitochondrial outer membrane protein, MOMA-1, that affects cristae morphology in Caenorhabditis elegans , 2011, Molecular biology of the cell.

[18]  Sang Ki Park,et al.  Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin , 2010, Proceedings of the National Academy of Sciences.

[19]  Y. Bahk,et al.  Caenorhabditis elegans mitofilin homologs control the morphology of mitochondrial cristae and influence reproduction and physiology , 2010, Journal of cellular physiology.

[20]  Mason R. Mackey,et al.  ChChd3, an Inner Mitochondrial Membrane Protein, Is Essential for Maintaining Crista Integrity and Mitochondrial Function , 2010, The Journal of Biological Chemistry.

[21]  M. Rossi,et al.  Mitochondrial Localization of PARP-1 Requires Interaction with Mitofilin and Is Involved in the Maintenance of Mitochondrial DNA Integrity* , 2009, The Journal of Biological Chemistry.

[22]  T. Lithgow,et al.  Importing Mitochondrial Proteins: Machineries and Mechanisms , 2009, Cell.

[23]  R. Jagasia,et al.  Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g , 2009, The Journal of cell biology.

[24]  Olga G. Troyanskaya,et al.  Computationally Driven, Quantitative Experiments Discover Genes Required for Mitochondrial Biogenesis , 2009, PLoS genetics.

[25]  Mingrui An,et al.  The Hippocampal Proteomic Analysis of Senescence-Accelerated Mouse: Implications of Uchl3 and Mitofilin in Cognitive Disorder and Mitochondria Dysfunction in SAMP8 , 2008, Neurochemical Research.

[26]  J. Xie,et al.  The mitochondrial inner membrane protein Mitofilin exists as a complex with SAM50, metaxins 1 and 2, coiled‐coil‐helix coiled‐coil‐helix domain‐containing protein 3 and 6 and DnaJC11 , 2007, FEBS letters.

[27]  L. Scorrano,et al.  A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis , 2007, Cell Death and Differentiation.

[28]  J. Nunnari The machines that divide and fuse mitochondria , 2007, Annual review of biochemistry.

[29]  N. Pfanner,et al.  Novel mitochondrial intermembrane space proteins as substrates of the MIA import pathway. , 2007, Journal of molecular biology.

[30]  A. Sawa,et al.  Disrupted‐in‐Schizophrenia‐1 (DISC1) , 2006, Annals of the New York Academy of Sciences.

[31]  A. Reichert,et al.  Dynamic subcompartmentalization of the mitochondrial inner membrane , 2006, The Journal of cell biology.

[32]  S. Jakobs,et al.  Differential protein distributions define two sub‐compartments of the mitochondrial inner membrane in yeast , 2006, FEBS letters.

[33]  Li Li,et al.  The mitochondrial inner membrane protein mitofilin controls cristae morphology. , 2005, Molecular biology of the cell.

[34]  R. Jensen,et al.  Ugo1p Links the Fzo1p and Mgm1p GTPases for Mitochondrial Fusion* , 2004, Journal of Biological Chemistry.

[35]  M. Ryan,et al.  Translocation of Proteins into Mitochondria , 2001, IUBMB life.

[36]  T G Frey,et al.  The internal structure of mitochondria. , 2000, Trends in biochemical sciences.

[37]  S J Young,et al.  Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. , 1997, Journal of structural biology.

[38]  C. Ungermann,et al.  Mitofilin is a transmembrane protein of the inner mitochondrial membrane expressed as two isoforms. , 1997, Experimental cell research.

[39]  G. Schatz The Protein Import System of Mitochondria* , 1996, The Journal of Biological Chemistry.

[40]  E. Fey,et al.  Molecular characterization of mitofilin (HMP), a mitochondria-associated protein with predicted coiled coil and intermembrane space targeting domains. , 1996, Journal of cell science.

[41]  N. Tsuchida,et al.  A novel human gene that is preferentially transcribed in heart muscle. , 1994, Gene.

[42]  W. Neupert,et al.  Functional and biogenetical heterogeneity of the inner membrane of rat-liver mitochondria. , 1972, European journal of biochemistry.

[43]  C. Hackenbrock Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[44]  G. Palade,et al.  The fine structure of mitochondria , 1952, The Anatomical record.

[45]  A. Reichert,et al.  Cristae formation-linking ultrastructure and function of mitochondria. , 2009, Biochimica et biophysica acta.

[46]  N. Pfanner,et al.  The mitochondrial import protein Mim1 promotes biogenesis of multispanning outer membrane proteins , 2011, The Journal of cell biology.