CDF sensitivity analysis technique for ranking influential parameters in the performance assessment of the proposed high-level waste repository at Yucca Mountain, Nevada, USA

Abstract A cumulative distribution function (CDF)-based method has been used to perform sensitivity analysis on a computer model that conducts total system performance assessment of the proposed high-level nuclear waste repository at Yucca Mountain, and to identify the most influential input parameters affecting the output of the model. The performance assessment computer model referred to as the TPA code, was recently developed by the US nuclear regulatory commission (NRC) and the center for nuclear waste regulatory analyses (CNWRA), to evaluate the performance assessments conducted by the US department of energy (DOE) in support of their license application. The model uses a probabilistic framework implemented through Monte Carlo or Latin hypercube sampling (LHS) to permit the propagation of uncertainties associated with model parameters, conceptual models, and future system states. The problem involves more than 246 uncertain parameters (also referred to as random variables) of which the ones that have significant influence on the response or the uncertainty of the response must be identified and ranked. The CDF-based approach identifies and ranks important parameters based on the sensitivity of the response CDF to the input parameter distributions. Based on a reliability sensitivity concept [AIAA Journal 32 (1994) 1717], the response CDF is defined as the integral of the joint probability-density-function of the input parameters, with a domain of integration that is defined by a subset of the samples. The sensitivity analysis does not require explicit knowledge of any specific relationship between the response and the input parameters, and the sensitivity is dependent upon the magnitude of the response. The method allows for calculating sensitivity over a wide range of the response and is not limited to the mean value.