Ni-Nb-P-based bulk glass-forming alloys: Superior material properties combined in one alloy family

[1]  R. Busch,et al.  On the thermodynamics and its connection to structure in the Pt-Pd-Cu-Ni-P bulk metallic glass forming system , 2021, Acta Materialia.

[2]  Fan Yang,et al.  Changes in the crystallization sequence upon sulfur addition in the Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass-forming liquid revealed by in situ high-energy x-ray diffraction , 2021, Physical Review Materials.

[3]  A. Feng,et al.  Structural origin of the enhancement in glass-forming ability of binary Ni-Nb metallic glasses , 2021, Journal of Non-Crystalline Solids.

[4]  Jun Shen,et al.  Effect of sulfur on the glass-forming ability, phase transformation, and thermal stability of Cu-Zr-Al bulk metallic glass , 2021 .

[5]  R. Busch,et al.  Bulk metallic glass formation in the (Ti,Zr)–(Ni,Cu)–S system , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  M. Zamanzade,et al.  Development and characterization of titanium-based bulk metallic glasses , 2019, Journal of Alloys and Compounds.

[7]  U. E. Klotz,et al.  The role of Ga addition on the thermodynamics, kinetics, and tarnishing properties of the Au-Ag-Pd-Cu-Si bulk metallic glass forming system , 2019, Acta Materialia.

[8]  M. Stolpe,et al.  On the bulk glass formation in the ternary Pd-Ni-S system , 2018, Acta Materialia.

[9]  R. Busch,et al.  Sulfur-bearing metallic glasses: A new family of bulk glass-forming alloys , 2018 .

[10]  X. D. Wang,et al.  Structural evolution and atomic dynamics in Ni-Nb metallic glasses: A molecular dynamics study. , 2017, The Journal of chemical physics.

[11]  R. Busch,et al.  Kinetics, Thermodynamics, and Structure of Bulk Metallic Glass Forming Liquids , 2017 .

[12]  S. H. Chen,et al.  Enhanced mechanical properties of Ni 62 Nb 38 bulk metallic glasses by Ta substitution , 2017 .

[13]  S. Pal,et al.  Contribution of Nb towards enhancement of glass forming ability and plasticity of Ni-Nb binary metallic glass , 2017 .

[14]  Y. Sun,et al.  Thermomechanical processing of metallic glasses: extending the range of the glassy state , 2016 .

[15]  D. B. Miracle,et al.  A predictive structural model for bulk metallic glasses , 2015, Nature Communications.

[16]  H. W. Zhang,et al.  Compressive plastic metallic glasses with exceptional glass forming ability in the Ti–Zr–Cu–Fe–Be alloy system , 2015 .

[17]  M. Shimono,et al.  Dynamics and Geometry of Icosahedral Order in Liquid and Glassy Phases of Metallic Glasses , 2015 .

[18]  Jonathan P. Wright,et al.  The fast azimuthal integration Python library: pyFAI , 2015, Journal of applied crystallography.

[19]  Andrew Hoff,et al.  Compositional landscape for glass formation in metal alloys , 2014, Proceedings of the National Academy of Sciences.

[20]  A. Inoue,et al.  Iron-based bulk metallic glasses , 2013 .

[21]  Evan Ma,et al.  Shear bands in metallic glasses , 2013 .

[22]  Stephen R. Williams,et al.  Identification of long-lived clusters and their link to slow dynamics in a model glass former. , 2012, The Journal of chemical physics.

[23]  M. Demetriou,et al.  Effect of microalloying on the toughness of metallic glasses , 2012 .

[24]  M. C. Valsakumar,et al.  First-principles calculation of phase equilibrium of V-Nb, V-Ta, and Nb-Ta alloys , 2012 .

[25]  Haifeng Zhang,et al.  Effect of Sn addition on the glass-forming ability and mechanical properties of Ni-Nb-Zr bulk metallic glasses , 2011 .

[26]  Wei Zhang,et al.  Binary Ni-Ta Bulk Metallic Glasses Designed by Using a Cluster-Plus-Glue-Atom Model , 2011 .

[27]  T. Unruh,et al.  Neutron scattering experiments on liquid droplets using electrostatic levitation , 2011 .

[28]  X. D. Wang,et al.  A plastic Zr–Cu–Ag–Al bulk metallic glass , 2011 .

[29]  Keith C. C. Chan,et al.  Enhanced plasticity by phase separation in CuZrAl bulk metallic glass with micro-addition of Fe , 2009 .

[30]  Haifeng Zhang,et al.  Synthesis and properties of bulk metallic glasses in the ternary Ni–Nb–Zr alloy system , 2008 .

[31]  Evan Ma,et al.  Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys , 2008 .

[32]  X. D. Wang,et al.  Formation of Ni–Nb–Zr–X (X = Ti, Ta, Fe, Cu, Co) bulk metallic glasses , 2008 .

[33]  K. Samwer,et al.  Dynamic singularity in multicomponent glass-forming metallic liquids. , 2008, Physical review letters.

[34]  H. Okamoto Nb-Ni (Niobium–Nickel) , 2008 .

[35]  Weihua Wang,et al.  Thermodynamics and Kinetics of Bulk Metallic Glass , 2007 .

[36]  S. Sohn,et al.  Two-step-like anomalous glass transition behavior in Ni-Zr-Nb-Al-Ta metallic glass alloys , 2007 .

[37]  A. L. Greer,et al.  Bulk Metallic Glasses: At the Cutting Edge of Metals Research , 2007 .

[38]  Weihua Wang Roles of minor additions in formation and properties of bulk metallic glasses , 2007 .

[39]  Z. Hu,et al.  Fabrication of Binary Ni‐Nb Bulk Metallic Glass with High Strength and Compressive Plasticity , 2006 .

[40]  D. Miracle The efficient cluster packing model : An atomic structural model for metallic glasses , 2006 .

[41]  W. H. Li,et al.  Binary Ni-Nb bulk metallic glasses , 2006 .

[42]  Akira Takeuchi,et al.  Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element , 2005 .

[43]  W. Johnson,et al.  A universal criterion for plastic yielding of metallic glasses with a (T/Tg) 2/3 temperature dependence. , 2005, Physical review letters.

[44]  A. Inoue,et al.  New Ti-Based Bulk Metallic Glasses with Significant Plasticity , 2005 .

[45]  G. Wang,et al.  Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy , 2005 .

[46]  K. Amiya,et al.  New Ti-Based Bulk Glassy Alloys with High Glass-Forming Ability and Superior Mechanical Properties , 2004 .

[47]  C. Liu,et al.  Effects of atomic bonding nature and size mismatch on thermal stability and glass-forming ability of bulk metallic glasses , 2004 .

[48]  Simon J. L. Billinge,et al.  PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data , 2004 .

[49]  Dong Wang,et al.  Bulk metallic glass formation in the binary Cu–Zr system , 2004 .

[50]  J. Schroers,et al.  Highly processable bulk metallic glass-forming alloys in the Pt–Co–Ni–Cu–P system , 2004 .

[51]  M. Telford The case for bulk metallic glass , 2004 .

[52]  D. Bae,et al.  Ni-Based Refractory Bulk Amorphous Alloys with High Thermal Stability , 2003 .

[53]  W. Johnson,et al.  Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X=B,Fe,Cu) alloy systems , 2003 .

[54]  Heinz Unbehauen,et al.  Gain-scheduled control of an electrostatic levitator , 2003 .

[55]  A. Inoue,et al.  New Bulk Glassy Ni-Based Alloys with High Strength of 3000 MPa , 2002 .

[56]  J. R. Rogers,et al.  Vitrification and determination of the crystallization time scales of the bulk-metallic-glass-forming liquid Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 , 2001 .

[57]  H. Habazaki,et al.  Highly corrosion-resistant Ni-based bulk amorphous alloys , 2001 .

[58]  R. Busch The thermophysical properties of bulk metallic glass-forming liquids , 2000 .

[59]  X. M. Wang,et al.  Bulk amorphous FC20 (Fe–C–Si) alloys with small amounts of B and their crystallized structure and mechanical properties , 2000 .

[60]  A. Inoue,et al.  Bulk Amorphous Ni75−xNb5MxP20−yBy (M=Cr, Mo) Alloys with Large Supercooling and High Strength , 1999 .

[61]  Weihua Wang,et al.  Role of small atoms in the formation and properties of Zr-Ti-Cu-Ni-Be bulk amorphous alloys , 1998 .

[62]  W. Johnson,et al.  THE EFFECT OF SILICON ON THE GLASS FORMING ABILITY OF THE CU47TI34ZR11NI8 BULK METALLIC GLASS FORMING ALLOY DURING PROCESSING OF COMPOSITES , 1998 .

[63]  A. Inoue Stabilization of Supercooled Liquid and Opening-up of Bulk Glassy Alloys. , 1997 .

[64]  H. Okamoto Ni-Ta (nickel-tantalum) , 1996 .

[65]  Won-Kyu Rhim,et al.  An electrostatic levitator for high-temperature containerless materials processing in 1-g , 1993 .

[66]  A. L. Greer,et al.  Formation of bulk metallic glass by fluxing , 1984 .

[67]  A. L. Greer,et al.  Bulk formation of a metallic glass: Pd40Ni40P20 , 1982 .

[68]  H. Angus The significance of hardness , 1979 .

[69]  D. Turnbull Under what conditions can a glass be formed , 1969 .

[70]  William Hyde Wollaston,et al.  XV. On the identity of Columbium and Tantalum , 1809, Philosophical Transactions of the Royal Society of London.