A certified plasmid reference material for the standardisation of BCR–ABL1 mRNA quantification by real-time quantitative PCR

Serial quantification of BCR–ABL1 mRNA is an important therapeutic indicator in chronic myeloid leukaemia, but there is a substantial variation in results reported by different laboratories. To improve comparability, an internationally accepted plasmid certified reference material (CRM) was developed according to ISO Guide 34:2009. Fragments of BCR–ABL1 (e14a2 mRNA fusion), BCR and GUSB transcripts were amplified and cloned into pUC18 to yield plasmid pIRMM0099. Six different linearised plasmid solutions were produced with the following copy number concentrations, assigned by digital PCR, and expanded uncertainties: 1.08±0.13 × 106, 1.08±0.11 × 105, 1.03±0.10 × 104, 1.02±0.09 × 103, 1.04±0.10 × 102 and 10.0±1.5 copies/μl. The certification of the material for the number of specific DNA fragments per plasmid, copy number concentration of the plasmid solutions and the assessment of inter-unit heterogeneity and stability were performed according to ISO Guide 35:2006. Two suitability studies performed by 63 BCR–ABL1 testing laboratories demonstrated that this set of 6 plasmid CRMs can help to standardise a number of measured transcripts of e14a2 BCR–ABL1 and three control genes (ABL1, BCR and GUSB). The set of six plasmid CRMs is distributed worldwide by the Institute for Reference Materials and Measurements (Belgium) and its authorised distributors (https://ec.europa.eu/jrc/en/reference-materials/catalogue/; CRM code ERM-AD623a-f).

H Emons | V Kairisto | S Trapmann | N Boeckx | D. Colomer | J. Cayuela | V. V. D. van der Velden | T. Lion | P. Corbisier | R. Zadro | G. Martinelli | C. Preudhomme | A. Bench | K. Zoi | N. Cross | H. White | L. Foroni | G. Gerrard | S. Akiki | T. Clench | G. Wilson | S. Hayette | T. Lange | H. Emons | J. Nomdedéu | M. Catherwood | U. Ozbek | H. El Housni | A. Hochhaus | H. Schimmel | M. Müller | V. Velden | N. Boeckx | S. Trapmann | H. Pfeifer | D-W. Kim | L. Wang | B. Milner | S. McCarron | Lihui Wang | C Preudhomme | H. Andrikovics | U Ozbek | G. Mitterbauer-Hohendanner | K Zoi | V Hall | N C P Cross | M C Müller | A Hochhaus | G Martinelli | G. Barbany | L Foroni | T. Lange | A. Aggerholm | J. Cayuela | H Pfeifer | R. Ganderton | G Barbany | T. Sacha | J Ziermann | P. Merle | H Schimmel | R Zadro | T Lion | A Aggerholm | H White | L Deprez | P Corbisier | F Lin | S Mazoua | H Andrikovics | S Akiki | A Bench | M Catherwood | J-M Cayuela | S Chudleigh | T Clench | D Colomer | F Daraio | S Dulucq | J Farrugia | L Fletcher | R Ganderton | G Gerrard | E Gineikienė | S Hayette | H El Housni | B Izzo | M Jansson | P Johnels | T Jurcek | A Kizilors | D-W Kim | T Lange | K M Polakova | S McCarron | P A Merle | B Milner | G Mitterbauer-Hohendanner | M Nagar | G Nickless | J Nomdedéu | D A Nymoen | E O Leibundgut | T Pajič | K Raudsepp | G Romeo | T Sacha | R Talmaci | T Touloumenidou | V H J Van der Velden | P Waits | L Wang | E Wilkinson | G Wilson | D Wren | A. Kizilors | R. Tălmaci | G. Nickless | J. Nomdedéu | S. Mazoua | F. Lin | E. O. Leibundgut | F. Daraio | B. Izzo | V. Kairisto | T. Jurček | M. Jansson | M. Müller | T. Touloumenidou | S. Dulucq | H. Housni | P. Johnels | J. Ziermann | T. Pajič | G. Romeo | K. Polakova | V. Hall | D. Wren | D. Nymoen | E. Gineikienė | B. Milner | L. Deprez | P. Waits | D. Kim | M. Nagar | E. Wilkinson | S. Chudleigh | J. Farrugia | L. Fletcher | K. Raudsepp | Giovanni Martinelli | S. Mccarron | A. Hochhaus | Markus Müller

[1]  J. Gabert,et al.  Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects , 2003, Leukemia.

[2]  M. Gordon Dasatinib versus Imatinib in Newly Diagnosed Chronic-Phase Chronic Myeloid Leukemia , 2010 .

[3]  Suzanne Kamel-Reid,et al.  Design and analytic validation of BCR-ABL1 quantitative reverse transcription polymerase chain reaction assay for monitoring minimal residual disease. , 2012, Archives of pathology & laboratory medicine.

[4]  Francisco Cervantes,et al.  European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. , 2013, Blood.

[5]  G. Saglio,et al.  Harmonization of BCR-ABL mRNA quantification using a uniform multifunctional control plasmid in 37 international laboratories , 2008, Leukemia.

[6]  H. Cavé,et al.  Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – A Europe Against Cancer Program , 2003, Leukemia.

[7]  D. Ang,et al.  BCR-ABL1 RT-qPCR for monitoring the molecular response to tyrosine kinase inhibitors in chronic myeloid leukemia. , 2013, The Journal of molecular diagnostics : JMD.

[8]  Susan Branford,et al.  Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. , 2003, The New England journal of medicine.

[9]  N. Cross,et al.  Harmonization of molecular monitoring of CML therapy in Europe , 2009, Leukemia.

[10]  N. Cross,et al.  Guidelines for the measurement of BCR‐ABL1 transcripts in chronic myeloid leukaemia , 2011, British journal of haematology.

[11]  Helen E White,et al.  Establishment and validation of analytical reference panels for the standardization of quantitative BCR-ABL1 measurements on the international scale. , 2013, Clinical chemistry.

[12]  Simona Soverini,et al.  Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. , 2006, Blood.

[13]  N. Cross Standardisation of molecular monitoring for chronic myeloid leukaemia. , 2009, Best practice & research. Clinical haematology.

[14]  Paul Metcalfe,et al.  Establishment of the first World Health Organization International Genetic Reference Panel for quantitation of BCR-ABL mRNA. , 2010, Blood.

[15]  F. Watzinger,et al.  Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) – a Europe against cancer program , 2003, Leukemia.

[16]  Martin C. Müller,et al.  Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  Martin C. Müller,et al.  Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. , 2008, Blood.

[18]  Suzanne Kamel-Reid,et al.  Inter-laboratory comparison of chronic myeloid leukemia minimal residual disease monitoring: summary and recommendations. , 2007, The Journal of molecular diagnostics : JMD.

[19]  N. Cross,et al.  Standardized definitions of molecular response in chronic myeloid leukemia , 2012, Leukemia.

[20]  Ricardo Pasquini,et al.  Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. , 2010, The New England journal of medicine.

[21]  L Siekmann,et al.  Estimating the uncertainty of stability for matrix CRMs , 2001, Fresenius' journal of analytical chemistry.

[22]  Corbisier Philippe,et al.  The certification of the copy number concentration of solutions of plasmid DNA containing a BCR-ABL b3a2 transcript fragment: ERM-AD623a, ERM-AD623b, ERM-AD623c, ERM-AD623d, ERM-AD623e, ERM-AD623f , 2012 .

[23]  S. Branford,et al.  Chronic Myelogenous Leukemia: Monitoring Response to Therapy , 2011, Current hematologic malignancy reports.