Supersonic metal cluster beams of refractory metals: Spectral investigations of ultracold Mo2

A novel technique involving pulsed laser vaporization of the bulk metal within a pulsed supersonic nozzle has been shown to successfully produce ultracold bare metal clusters of even the most refractory of metals, tungsten and molybdenum. Clusters of up to 25 atoms may be readily prepared using this technique. Mass‐selective resonant two‐photon ionization spectra of Mo2 produced in this fashion show that the dimer is efficiently cooled in the expansion Ttrans<6 K, Trot∼5 K, and Tvib∼325 K. We have rotationally resolved the A 1Σ+u←X 1Σ+g (0–0) band for 92Mo2 and determined the bond length in the ground and excited states to be 1.940±0.009 and 1.937±0.008 A, respectively. This confirms and extends the analysis of Efremov et al. [J. Mol. Spectrosc. 73, 40 (1970)] who prepared 98Mo2 by flash photolysis of isotopically pure Mo(CO)6. We have also observed the (1–1), (2–2), and (3–3) sequence bands which together with the ground state data of Efremov et al. determine vibrational constants ω′e=449.0±0.2 cm−1 and ...

[1]  J. B. Hopkins,et al.  Supersonic metal cluster beams: laser photoionization studies of copper cluster (Cu2) , 1982 .

[2]  W. Goddard,et al.  Nature of Mo-Mo and Cr-Cr Multiple Bonds: A Challenge for the Local-Density Approximation , 1982 .

[3]  B. Feuerbacher,et al.  A pulsed molecular beam source , 1981 .

[4]  T. E. Adams,et al.  Convenient fast pulsed molecular beam valve , 1981 .

[5]  D. E. Powers,et al.  Laser production of supersonic metal cluster beams , 1981 .

[6]  W. Goddard,et al.  The "sextuple" bond of chromium dimer , 1981 .

[7]  D. Dilella,et al.  Di-iron and nickeliron , 1980 .

[8]  R. Smalley,et al.  Resonance enhanced two-photon ionization studies in a supersonic molecular beam: Bromobenzene and iodobenzene , 1980 .

[9]  M. Guest,et al.  Electron correlation and the nature of the sextuple bond in the dimolybdenum molecule , 1980 .

[10]  F. Cotton,et al.  Dimolybdenum: nature of the sextuple bond , 1980 .

[11]  J. Gole,et al.  The supersonic expansion of pure copper vapor , 1979 .

[12]  S. Leutwyler,et al.  Optical spectroscopy of Na3 by two-photon ionization in a supersonic molecular beam , 1979 .

[13]  R. Atkins,et al.  Mass spectrometric observation and bond dissociation energy of dimolybdenum, Mo2(g) , 1978 .

[14]  W. Goddard,et al.  The electronic states of Ni2 and Ni2 , 1978 .

[15]  J. Toennies,et al.  Theoretical studies of highly expanded free jets: Influence of quantum effects and a realistic intermolecular potential , 1977 .

[16]  L. Gurvich,et al.  The electronic absorption spectrum of the CrMo molecule , 1976 .

[17]  W. J. Balfour,et al.  The Visible Absorption Spectrum of Diatomic Calcium , 1975 .

[18]  William J. Tango,et al.  Spectroscopy of K2 Using Laser-Induced Fluorescence , 1968 .

[19]  J. C. Slater Atomic Shielding Constants , 1930 .

[20]  E. Wigner,et al.  Über die Struktur der zweiatomigen Molekelspektren nach der Quantenmechanik , 1928 .

[21]  F. Albert Cotton,et al.  Multiple bonds between metal atoms , 1982 .

[22]  F. Cotton,et al.  Dependence of stability, bond strength and electronic structure of dimetal units upon atomic number, oxidation number and chemical environment , 1980 .

[23]  P. Wegener Molecular beams and low density gasdynamics , 1974 .