Role of hydrogen-bonding in the formation of polar achiral and nonpolar chiral vanadium selenite frameworks.

A series of organically templated vanadium selenites have been prepared under mild hydrothermal conditions. Single crystals were grown from mixtures of VOSO(4), SeO(2), and either 1,4-dimethylpiperazine, 2,5-dimethylpiperazine, or 2-methylpiperazine in H(2)O. Each compound contains one-dimensional [VO(SeO(3))(HSeO(3))](n)(n-) secondary building units, which connect to form three-dimensional frameworks in the presence of 2,5-dimethylpiperazine or 2-methylpiperazine. Differences in composition and both intra-secondary building unit and organic-inorganic hydrogen-bonding between compounds dictate the dimensionality of the resulting inorganic structures. [1,4-dimethylpiperazineH(2)][VO(SeO(3))(HSeO(3))](2) contains one-dimensional [VO(SeO(3))(HSeO(3))](n)(n-) chains, while [2,5-dimethylpiperazineH(2)][VO(SeO(3))(HSeO(3))](2)·2H(2)O contains a three-dimensional [VO(SeO(3))(HSeO(3))](n)(n-) framework. The use of racemic 2-methylpiperazine also results in a compound containing a three-dimensional [VO(SeO(3))(HSeO(3))](n)(n-) framework, crystallizing in the noncentrosymmetric polar, achiral space group Pca2(1) (no. 29), while analogous reactions containing either (R)-2-methylpiperazine or (S)-2-methylpiperazine result in noncentrosymmetric, nonpolar chiral frameworks that crystallize in P2(1)2(1)2 (no. 18). The formation of these noncentrosymmetric framework materials is dictated by the structure, symmetry, and hydrogen-bonding properties of the [2-methylpiperazineH(2)](2+) cations.

[1]  C. Rao,et al.  Chemical design of materials: A case study of inorganic open-framework materials , 2005 .

[2]  Cheetham,et al.  Open-Framework Inorganic Materials. , 1999, Angewandte Chemie.

[3]  Ling Chen,et al.  Noncentrosymmetric inorganic open-framework chalcohalides with strong middle IR SHG and red emission: Ba3AGa5Se10Cl2 (A = Cs, Rb, K). , 2012, Journal of the American Chemical Society.

[4]  P. Halasyamani,et al.  Two New Noncentrosymmetric Polar Oxides: Synthesis, Characterization, Second-Harmonic Generating, and Pyroelectric Measurements on TlSeVO5 and TlTeVO5 , 2007 .

[5]  Pengyan Wu,et al.  Homochiral metal-organic frameworks for heterogeneous asymmetric catalysis. , 2010, Journal of the American Chemical Society.

[6]  Alexander J. Norquist,et al.  Directed Synthesis of Noncentrosymmetric Molybdates , 2005 .

[7]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[8]  Patrick Bultinck,et al.  Electrostatic Potentials from Self-Consistent Hirshfeld Atomic Charges. , 2009, Journal of chemical theory and computation.

[9]  C. Stern,et al.  Cation-anion interactions and polar structures in the solid state. , 2007, Journal of the American Chemical Society.

[10]  P. Maggard,et al.  Alignment of acentric MoO3F33− anions in a polar material: (Ag3MoO3F3)(Ag3MoO4)Cl , 2003 .

[11]  D. O′Hare,et al.  The role of amine sulfates in hydrothermal uranium chemistry. , 2005, Inorganic chemistry.

[12]  C. Rao,et al.  Transformation of a 4-membered ring zinc phosphate SBU to a sodalite-related 3-dimensional structure through a linear chain structure. , 2003, Chemical communications.

[13]  P. Halasyamani,et al.  Directed synthesis of noncentrosymmetric molybdates using composition space analysis. , 2006, Inorganic chemistry.

[14]  P. Halasyamani,et al.  Structure and physical properties of the polar oxysulfide CaZnOS. , 2007, Inorganic chemistry.

[15]  Amitava Choudhury,et al.  Organically templated vanadyl selenites with layered structures. , 2003, Inorganic chemistry.

[16]  Guanghua Li,et al.  Hydrothermal synthesis and structural characterization of a new layered vanadium selenite: (C4N2H12)0.5[(VO)2(H2O)2(SeO3)2(HSeO3)] , 2005 .

[17]  D. O′Hare,et al.  The effects of hydrofluoric acid addition on the hydrothermal synthesis of templated uranium sulfates. , 2004, Dalton transactions.

[18]  Amitava Choudhury,et al.  Transformations of low-dimensional zinc phosphates to complex open-framework structures. Part 1: zero-dimensional to one-, two- and three-dimensional structures , 2001 .

[19]  C. Stern,et al.  Chemical Hardness and the Adaptive Coordination Behavior of the d0 Transition Metal Oxide Fluoride Anions , 2009 .

[20]  W. Cheng,et al.  Explorations of new types of second-order nonlinear optical materials in Cd(Zn)-VV-TeIV-O Systems. , 2008, Chemistry.

[21]  R. Kiebach,et al.  [C6H21N4][Sb9S14O]: Solvothermal synthesis, crystal structure and characterization of the first non-centrosymmetric open Sb–S–O framework containing the new [SbS2O] building unit , 2006 .

[22]  Jun-Ho Kim,et al.  (NH4)2Te2WO8: A New Polar Oxide with Second-Harmonic Generating, Ferroelectric, and Pyroelectric Properties , 2007 .

[23]  Patrick Bultinck,et al.  Critical analysis and extension of the Hirshfeld atoms in molecules. , 2007, The Journal of chemical physics.

[24]  S. Teat,et al.  Imposition of Polarity on a Centrosymmetric Zeolite Host: The Effect of Fluoride Ions on Template Ordering in Zeolite IFR , 2000 .

[25]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[26]  Alexander J. Norquist,et al.  Charge density matching in templated molybdates , 2009 .

[27]  Gautam R Desiraju,et al.  Hydrogen bridges in crystal engineering: interactions without borders. , 2002, Accounts of chemical research.

[28]  Gérard Férey,et al.  Oxyfluorinated microporous compounds ULM-n: chemical parameters, structures and a proposed mechanism for their molecular tectonics , 1995 .

[29]  P. Halasyamani,et al.  Noncentrosymmetric Polar Oxide Material, Pb3SeO5: Synthesis, Characterization, Electronic Structure Calculations, and Structure−Property Relationships , 2009 .

[30]  Russell E Morris,et al.  Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids. , 2007, Accounts of chemical research.

[31]  C. Rao,et al.  Toward the Rational Design of Open-Framework Materials , 2005 .

[32]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[33]  C. G. Wilson,et al.  [pyH]2[Cu(py)4(MX6)2] (MX6=ZrF62-, NbOF52-; MoO2F42-; py=Pyridine): Rarely Observed Ordering of Metal Oxide Fluoride Anions , 1998 .

[34]  P. Halasyamani,et al.  Polar or nonpolar? A+ cation polarity control in A2Ti(IO3)6 (A = Li, Na, K, Rb, Cs, Tl). , 2009, Journal of the American Chemical Society.

[35]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[36]  Shiou-Jyh Hwu,et al.  The fascinating noncentrosymmetric copper(II) phosphates synthesized via CsCl salt-inclusion. , 2003, Inorganic chemistry.

[37]  R. Pearson Symmetry rule for predicting molecular structures , 1969 .

[38]  C. Stern,et al.  Examining the out-of-center distortion in the [NbOF5]2- anion. , 2005, Inorganic chemistry.

[39]  Samuel M Blau,et al.  Noncentrosymmetry in new templated gallium fluorophosphates. , 2009, Inorganic chemistry.

[40]  Alexander J. Norquist,et al.  Beyond Charge Density Matching: The Role of C–H···O Interactions in the Formation of Templated Vanadium Tellurites , 2011 .

[41]  P. Halasyamani,et al.  Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. , 2006, Chemical Society reviews.

[42]  Anthony L. Spek,et al.  Journal of , 1993 .

[43]  Alexander J. Norquist,et al.  [C5H14N2][(MoO3)3(SO4)]·H2O: Sulfated α-Molybdena Chains , 2004 .

[44]  Matthias Zeller,et al.  The role of stereoactive lone pairs in templated vanadium tellurite charge density matching. , 2010, Inorganic chemistry.

[45]  Mark E. Davis,et al.  Structure-directing agent location and non-centrosymmetric structure of fluoride-containing zeolite SSZ-55. , 2006, The journal of physical chemistry. B.

[46]  C. Rao,et al.  Transformations of molecules and secondary building units to materials: a bottom-up approach. , 2004, Accounts of chemical research.

[47]  Gautam R Desiraju,et al.  C-H...O and other weak hydrogen bonds. From crystal engineering to virtual screening. , 2005, Chemical communications.

[48]  Matthias Zeller,et al.  [R-C{sub 7}H{sub 16}N{sub 2}][V{sub 2}Te{sub 2}O{sub 10}] and [S-C{sub 7}H{sub 16}N{sub 2}][V{sub 2}Te{sub 2}O{sub 10}]; new polar templated vanadium tellurite enantiomers , 2011 .

[49]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[50]  D. O′Hare,et al.  Exploration of composition space in templated uranium sulfates. , 2003, Inorganic chemistry.

[51]  Gérard Férey,et al.  Microporous Solids: From Organically Templated Inorganic Skeletons to Hybrid Frameworks...Ecumenism in Chemistry , 2001 .

[52]  Dermot O'Hare,et al.  Organically templated uranium(VI) sulfates: understanding phase stability using composition space , 2003 .

[53]  Hongfang Yang,et al.  A novel vanadyl selenite templated by organic salt: [(VO)(H2O)2(SeO3)]2[(H2pipe)SO4] , 2004 .

[54]  Giovanni Luca Cascarano,et al.  Completion and refinement of crystal structures with SIR92 , 1993 .

[55]  R. Hoffmann,et al.  Symmetric vs. asymmetric linear M-X-M linkages in molecules, polymers, and extended networks. , 1986, Journal of the American Chemical Society.

[56]  C. Fischer,et al.  Extension of the HF program to partially filled f-subshells , 1996, physics/0406002.

[57]  C. Rao,et al.  Metal complexes of organophosphate esters and open-framework metal phosphates: synthesis, structure, transformations, and applications. , 2008, Chemical reviews.

[58]  S. K. Kurtz,et al.  A Powder Technique for the Evaluation of Nonlinear Optical Materials , 1968 .

[59]  Alexander J. Norquist,et al.  [R-C7H16N2][V2Te2O10] and [S-C7H16N2][V2Te2O10]; new polar templated vanadium tellurite enantiomers , 2011 .

[60]  W. H. Baur,et al.  Crystal Chemical Aspects of Vanadium: Polyhedral Geometries, Characteristic Bond Valences, and Polymerization of (VOn) Polyhedra , 2000 .

[61]  Alexander J. Norquist,et al.  Understanding an Order-Disorder Phase Transition in Ionothermally Synthesized Gallium Phosphates , 2011 .

[62]  K. Poeppelmeier,et al.  The role of polar, lamdba (Λ)-shaped building units in noncentrosymmetric inorganic structures. , 2012, Journal of the American Chemical Society.

[63]  Andrea Prior,et al.  A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality , 2000 .

[64]  M. Kunz,et al.  Out-of-Center Distortions around Octahedrally Coordinated d0 Transition Metals , 1995 .

[65]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[66]  Richard I. Cooper,et al.  CRYSTALS version 12: software for guided crystal structure analysis , 2003 .

[67]  P. Halasyamani,et al.  Synthesis and characterization of Te2SeO7 : A powder second-harmonic-generating study of TeO2, Te2SeO7, Te2O5, and TeSeO4 , 2001 .

[68]  P. Halasyamani,et al.  A3V5O14 (A = K+, Rb+, or Tl+), new polar oxides with a tetragonal tungsten bronze related structural topology: synthesis, structure, and functional properties. , 2010, Inorganic chemistry.

[69]  Desmond J Hubbard,et al.  Synthetic approaches for noncentrosymmetric molybdates. , 2008, Inorganic chemistry.

[70]  D. O′Hare,et al.  Controlled structural variations in templated uranium sulfates. , 2003, Inorganic chemistry.

[71]  T. Yamase,et al.  Synthesis and Crystal Structures of γ-Type Octamolybdates Coordinated by Chiral Lysines , 1995 .

[72]  W. Harrison Templated Inorganic Networks: Recent Developments , 2002 .

[73]  Tony D. Keene,et al.  [V16O38(CN)]9–: a soluble mixed-valence redox-active building block with strong antiferromagnetic coupling. , 2012, Inorganic chemistry.

[74]  K. Tiels,et al.  Uniqueness and basis set dependence of iterative Hirshfeld charges , 2007 .

[75]  Guanghua Li,et al.  Hydrothermal syntheses and structures of two novel vanadium selenites, {[VO(OH)(H2O)](SeO3)}4·2H2O and (H3NCH2CH2NH3)[(VO)(SeO3)2] , 2003 .

[76]  H. Yun,et al.  Synthesis and Structure of a Two‐dimensional Vanadium Tellurite, [H2en][VTeO5]2 , 2006 .