Computer Assisted Proof of Transverse Saddle-to-Saddle Connecting Orbits for First Order Vector Fields
暂无分享,去创建一个
Jean-Philippe Lessard | Christian Reinhardt | J. Lessard | Christian Reinhardt | Jason D. Mireles James | J. M. Mireles James
[1] J. Knobloch,et al. Lin's method for heteroclinic chains involving periodic orbits , 2009, 0903.4902.
[2] Daniel Stoffer,et al. Rigorous verification of chaotic behaviour of maps using validated shadowing , 1999 .
[3] Mark J. Friedman,et al. Numerical computation and continuation of invariant manifolds connecting fixed points , 1991 .
[4] A. Neumaier,et al. Rigorous chaos verification in discrete dynamical systems , 1993 .
[5] Konstantin Mischaikow,et al. Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..
[6] W. Tucker,et al. A Note on the Convergence of Parametrised Non-Resonant Invariant Manifolds , 2008, 0811.4500.
[7] Marian Gidea,et al. Covering relations for multidimensional dynamical systems , 2004 .
[8] R. Llave,et al. The parameterization method for invariant manifolds. II: Regularity with respect to parameters , 2003 .
[9] S. Smale. Diffeomorphisms with Many Periodic Points , 1965 .
[10] L. Ahlfors. Complex analysis : an introduction to the theory of analytic functions of one complex variable / Lars V. Ahlfors , 1984 .
[11] 中尾 充宏. Numerical Verification Methods for Solutions of Ordinary and Partial Differential Equations (数学解析の理論的展開の計算機上での遂行可能性) , 2000 .
[12] P. Zgliczynski,et al. Covering relations, cone conditions and the stable manifold theorem , 2009 .
[13] Marian Mrozek,et al. Heteroclinic Connections in the Kuramoto-Sivashinsky Equation: a Computer Assisted Proof , 1997, Reliab. Comput..
[14] R. Llave,et al. The parameterization method for invariant manifolds III: overview and applications , 2005 .
[15] Konstantin Mischaikow,et al. Rigorous Numerics for Symmetric Connecting Orbits: Even Homoclinics of the Gray-Scott Equation , 2011, SIAM J. Math. Anal..
[16] Wolf-Jürgen Beyn,et al. The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .
[17] Daniel Wilczak,et al. Heteroclinic Connections Between Periodic Orbits in Planar Restricted Circular Three Body Problem. Part II , 2006 .
[18] Maciej J. Capiński. Covering relations and the existence of topologicallynormally hyperbolic invariant sets , 2008 .
[19] C. Conley. Isolated Invariant Sets and the Morse Index , 1978 .
[20] Daniel Wilczak,et al. Symmetric Heteroclinic Connections in the Michelson System: A Computer Assisted Proof , 2005, SIAM J. Appl. Dyn. Syst..
[21] L. Ahlfors. Complex Analysis , 1979 .
[22] Daniel Wilczak,et al. Heteroclinic Connections Between Periodic Orbits in Planar Restricted Circular Three Body Problem. Part II , 2004 .
[23] Devharsh Trivedi,et al. Overview and Applications , 2015 .
[24] Bernd Krauskopf,et al. A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits , 2008 .
[25] Mark J. Friedman,et al. Numerical computation of heteroclinic orbits , 1989 .
[26] Eusebius J. Doedel,et al. Successive continuation for locating connecting orbits , 2004, Numerical Algorithms.
[27] Siegfried M. Rump,et al. Verification methods: rigorous results using floating-point arithmetic , 2010, Acta Numerica.
[28] Ernest Fontich Julià,et al. The parameterization method for invariant manifolds , 2006 .
[29] Shin'ichi Oishi. Numerical Verification Method of Existence of Connecting Orbits for Continuous Dynamical Systems , 1998, J. Univers. Comput. Sci..
[30] Kenneth J. Palmer,et al. Exponential Dichotomies, the Shadowing Lemma and Transversal Homoclinic Points , 1988 .
[31] Konstantin Mischaikow,et al. Rigorous Numerics for Global Dynamics: A Study of the Swift-Hohenberg Equation , 2005, SIAM J. Appl. Dyn. Syst..
[32] Nobito Yamamoto,et al. A Numerical Verification Method for Solutions of Boundary Value Problems with Local Uniqueness by Banach's Fixed-Point Theorem , 1998 .
[33] H. Koçak,et al. Homoclinic Shadowing , 2005 .
[34] R. Llave,et al. The parameterization method for invariant manifolds. I: Manifolds associated to non-resonant subspaces , 2003 .
[35] J. Ortega. The Newton-Kantorovich Theorem , 1968 .
[36] Konstantin Mischaikow,et al. Rigorous A Posteriori Computation of (Un)Stable Manifolds and Connecting Orbits for Analytic Maps , 2013, SIAM J. Appl. Dyn. Syst..
[37] Daniel Wilczak. Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system , 2009 .
[38] Hüseyin Koçak,et al. Transversal connecting orbits from shadowing , 2007, Numerische Mathematik.
[39] Konstantin Mischaikow,et al. Connected simple systems, transition matrices, and heteroclinic bifurcations , 1992 .
[40] Konstantin Mischaikow,et al. Rigorous Computations of Homoclinic Tangencies , 2006, SIAM J. Appl. Dyn. Syst..
[41] Mark J. Friedman,et al. On locating connecting orbits , 1994 .