Computer Assisted Proof of Transverse Saddle-to-Saddle Connecting Orbits for First Order Vector Fields

In this paper we introduce a computational method for proving the existence of generic saddle-to-saddle connections between equilibria of first order vector fields. The first step consists of rigorously computing high order parametrizations of the local stable and unstable manifolds. If the local manifolds intersect, the Newton–Kantorovich theorem is applied to validate the existence of a so-called short connecting orbit. If the local manifolds do not intersect, a boundary value problem with boundary values in the local manifolds is rigorously solved by a contraction mapping argument on a ball centered at the numerical solution, yielding the existence of a so-called long connecting orbit. In both cases our argument yields transversality of the corresponding intersection of the manifolds. The method is applied to the Lorenz equations, where a study of a pitchfork bifurcation with saddle-to-saddle stability is done and where several proofs of existence of short and long connections are obtained.

[1]  J. Knobloch,et al.  Lin's method for heteroclinic chains involving periodic orbits , 2009, 0903.4902.

[2]  Daniel Stoffer,et al.  Rigorous verification of chaotic behaviour of maps using validated shadowing , 1999 .

[3]  Mark J. Friedman,et al.  Numerical computation and continuation of invariant manifolds connecting fixed points , 1991 .

[4]  A. Neumaier,et al.  Rigorous chaos verification in discrete dynamical systems , 1993 .

[5]  Konstantin Mischaikow,et al.  Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..

[6]  W. Tucker,et al.  A Note on the Convergence of Parametrised Non-Resonant Invariant Manifolds , 2008, 0811.4500.

[7]  Marian Gidea,et al.  Covering relations for multidimensional dynamical systems , 2004 .

[8]  R. Llave,et al.  The parameterization method for invariant manifolds. II: Regularity with respect to parameters , 2003 .

[9]  S. Smale Diffeomorphisms with Many Periodic Points , 1965 .

[10]  L. Ahlfors Complex analysis : an introduction to the theory of analytic functions of one complex variable / Lars V. Ahlfors , 1984 .

[11]  中尾 充宏 Numerical Verification Methods for Solutions of Ordinary and Partial Differential Equations (数学解析の理論的展開の計算機上での遂行可能性) , 2000 .

[12]  P. Zgliczynski,et al.  Covering relations, cone conditions and the stable manifold theorem , 2009 .

[13]  Marian Mrozek,et al.  Heteroclinic Connections in the Kuramoto-Sivashinsky Equation: a Computer Assisted Proof , 1997, Reliab. Comput..

[14]  R. Llave,et al.  The parameterization method for invariant manifolds III: overview and applications , 2005 .

[15]  Konstantin Mischaikow,et al.  Rigorous Numerics for Symmetric Connecting Orbits: Even Homoclinics of the Gray-Scott Equation , 2011, SIAM J. Math. Anal..

[16]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .

[17]  Daniel Wilczak,et al.  Heteroclinic Connections Between Periodic Orbits in Planar Restricted Circular Three Body Problem. Part II , 2006 .

[18]  Maciej J. Capiński Covering relations and the existence of topologicallynormally hyperbolic invariant sets , 2008 .

[19]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[20]  Daniel Wilczak,et al.  Symmetric Heteroclinic Connections in the Michelson System: A Computer Assisted Proof , 2005, SIAM J. Appl. Dyn. Syst..

[21]  L. Ahlfors Complex Analysis , 1979 .

[22]  Daniel Wilczak,et al.  Heteroclinic Connections Between Periodic Orbits in Planar Restricted Circular Three Body Problem. Part II , 2004 .

[23]  Devharsh Trivedi,et al.  Overview and Applications , 2015 .

[24]  Bernd Krauskopf,et al.  A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits , 2008 .

[25]  Mark J. Friedman,et al.  Numerical computation of heteroclinic orbits , 1989 .

[26]  Eusebius J. Doedel,et al.  Successive continuation for locating connecting orbits , 2004, Numerical Algorithms.

[27]  Siegfried M. Rump,et al.  Verification methods: rigorous results using floating-point arithmetic , 2010, Acta Numerica.

[28]  Ernest Fontich Julià,et al.  The parameterization method for invariant manifolds , 2006 .

[29]  Shin'ichi Oishi Numerical Verification Method of Existence of Connecting Orbits for Continuous Dynamical Systems , 1998, J. Univers. Comput. Sci..

[30]  Kenneth J. Palmer,et al.  Exponential Dichotomies, the Shadowing Lemma and Transversal Homoclinic Points , 1988 .

[31]  Konstantin Mischaikow,et al.  Rigorous Numerics for Global Dynamics: A Study of the Swift-Hohenberg Equation , 2005, SIAM J. Appl. Dyn. Syst..

[32]  Nobito Yamamoto,et al.  A Numerical Verification Method for Solutions of Boundary Value Problems with Local Uniqueness by Banach's Fixed-Point Theorem , 1998 .

[33]  H. Koçak,et al.  Homoclinic Shadowing , 2005 .

[34]  R. Llave,et al.  The parameterization method for invariant manifolds. I: Manifolds associated to non-resonant subspaces , 2003 .

[35]  J. Ortega The Newton-Kantorovich Theorem , 1968 .

[36]  Konstantin Mischaikow,et al.  Rigorous A Posteriori Computation of (Un)Stable Manifolds and Connecting Orbits for Analytic Maps , 2013, SIAM J. Appl. Dyn. Syst..

[37]  Daniel Wilczak Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system , 2009 .

[38]  Hüseyin Koçak,et al.  Transversal connecting orbits from shadowing , 2007, Numerische Mathematik.

[39]  Konstantin Mischaikow,et al.  Connected simple systems, transition matrices, and heteroclinic bifurcations , 1992 .

[40]  Konstantin Mischaikow,et al.  Rigorous Computations of Homoclinic Tangencies , 2006, SIAM J. Appl. Dyn. Syst..

[41]  Mark J. Friedman,et al.  On locating connecting orbits , 1994 .