Do gamma oscillations play a role in cerebral cortex?

[1]  Robert Oostenveld,et al.  Visual Cortical Gamma-Band Activity During Free Viewing of Natural Images , 2013, Cerebral cortex.

[2]  Dimitri M. Kullmann,et al.  Oscillatory multiplexing of population codes for selective communication in the mammalian brain , 2014, Nature Reviews Neuroscience.

[3]  Miles A. Whittington,et al.  Neurosystems: brain rhythms and cognitive processing , 2013, The European journal of neuroscience.

[4]  Danko Nikolić,et al.  Membrane Resonance Enables Stable and Robust Gamma Oscillations , 2012, Cerebral cortex.

[5]  John H R Maunsell,et al.  Cortical neural populations can guide behavior by integrating inputs linearly, independent of synchrony , 2013, Proceedings of the National Academy of Sciences.

[6]  Satu Palva,et al.  Load Dependence of β and γ Oscillations Predicts Individual Capacity of Visual Attention , 2013, The Journal of Neuroscience.

[7]  P. Lledo,et al.  Odor Discrimination Requires Proper Olfactory Fast Oscillations in Awake Mice , 2013, Neuron.

[8]  Martin Vinck,et al.  Attentional Modulation of Cell-Class-Specific Gamma-Band Synchronization in Awake Monkey Area V4 , 2013, Neuron.

[9]  Stefano Panzeri,et al.  Modelling and analysis of local field potentials for studying the function of cortical circuits , 2013, Nature Reviews Neuroscience.

[10]  N. Logothetis,et al.  Scaling Brain Size, Keeping Timing: Evolutionary Preservation of Brain Rhythms , 2013, Neuron.

[11]  Michael Graupner,et al.  Synaptic Input Correlations Leading to Membrane Potential Decorrelation of Spontaneous Activity in Cortex , 2013, The Journal of Neuroscience.

[12]  Z. Josh Huang,et al.  A Cortico-Hippocampal Learning Rule Shapes Inhibitory Microcircuit Activity to Enhance Hippocampal Information Flow , 2013, Neuron.

[13]  Pascal Fries,et al.  Visual stimulus eccentricity affects human gamma peak frequency , 2013, NeuroImage.

[14]  Sukbin Lim,et al.  Balanced cortical microcircuitry for maintaining information in working memory , 2013, Nature Neuroscience.

[15]  Laura E. Matzen,et al.  Frequency-Dependent Enhancement of Fluid Intelligence Induced by Transcranial Oscillatory Potentials , 2013, Current Biology.

[16]  Rita Zemankovics,et al.  Explorer Feedforward Inhibition Underlies the Propagation of Cholinergically Induced Gamma Oscillations from Hippocampal CA 3 to CA 1 , 2016 .

[17]  P. Golshani,et al.  Cellular mechanisms of brain-state-dependent gain modulation in visual cortex , 2013, Nature Neuroscience.

[18]  P. Fries,et al.  Robust Gamma Coherence between Macaque V1 and V2 by Dynamic Frequency Matching , 2013, Neuron.

[19]  A. Kohn,et al.  Gamma and the Coordination of Spiking Activity in Early Visual Cortex , 2013, Neuron.

[20]  Adam Kohn,et al.  Laminar dependence of neuronal correlations in visual cortex. , 2013, Journal of neurophysiology.

[21]  W. Singer,et al.  Gamma oscillations: precise temporal coordination without a metronome , 2013, Trends in Cognitive Sciences.

[22]  Amy M. Ni,et al.  Strength of Gamma Rhythm Depends on Normalization , 2013, PLoS biology.

[23]  A. Kohn,et al.  No Consistent Relationship between Gamma Power and Peak Frequency in Macaque Primary Visual Cortex , 2013, The Journal of Neuroscience.

[24]  Dimitri M. Kullmann,et al.  Efficient “Communication through Coherence” Requires Oscillations Structured to Minimize Interference between Signals , 2012, PLoS Comput. Biol..

[25]  R. Shapley,et al.  Stochastic Generation of Gamma-Band Activity in Primary Visual Cortex of Awake and Anesthetized Monkeys , 2012, The Journal of Neuroscience.

[26]  W. Singer,et al.  Neuronal Dynamics and Neuropsychiatric Disorders: Toward a Translational Paradigm for Dysfunctional Large-Scale Networks , 2012, Neuron.

[27]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[28]  Margaret F. Carr,et al.  Transient Slow Gamma Synchrony Underlies Hippocampal Memory Replay , 2012, Neuron.

[29]  Chun-I Yeh,et al.  Laminar analysis of visually evoked activity in the primary visual cortex , 2012, Proceedings of the National Academy of Sciences.

[30]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[31]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[32]  Amy M. Ni,et al.  Tuned Normalization Explains the Size of Attention Modulations , 2012, Neuron.

[33]  D. Schwarzkopf,et al.  The Frequency of Visually Induced Gamma-Band Oscillations Depends on the Size of Early Human Visual Cortex , 2012, The Journal of Neuroscience.

[34]  Murray Shanahan,et al.  Establishing Communication between Neuronal Populations through Competitive Entrainment , 2012, Front. Comput. Neurosci..

[35]  J. Maunsell,et al.  Network Rhythms Influence the Relationship between Spike-Triggered Local Field Potential and Functional Connectivity , 2011, The Journal of Neuroscience.

[36]  R. Shapley,et al.  Is Gamma-Band Activity in the Local Field Potential of V1 Cortex a “Clock” or Filtered Noise? , 2011, The Journal of Neuroscience.

[37]  M. A. Smith,et al.  Stimulus Selectivity and Spatial Coherence of Gamma Components of the Local Field Potential , 2011, The Journal of Neuroscience.

[38]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[39]  J. Maunsell,et al.  Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex , 2011, PLoS biology.

[40]  Terrence J. Sejnowski,et al.  Mechanisms for Phase Shifting in Cortical Networks and their Role in Communication through Coherence , 2010, Front. Hum. Neurosci..

[41]  J. Maunsell,et al.  Differences in Gamma Frequencies across Visual Cortex Restrict Their Possible Use in Computation , 2010, Neuron.

[42]  David A. Leopold,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[43]  Michael Okun,et al.  The Subthreshold Relation between Cortical Local Field Potential and Neuronal Firing Unveiled by Intracellular Recordings in Awake Rats , 2010, The Journal of Neuroscience.

[44]  W. Singer,et al.  Abnormal neural oscillations and synchrony in schizophrenia , 2010, Nature Reviews Neuroscience.

[45]  W. Singer,et al.  Gamma-Phase Shifting in Awake Monkey Visual Cortex , 2010, The Journal of Neuroscience.

[46]  W. Singer,et al.  Synchronization Dynamics in Response to Plaid Stimuli in Monkey V1 , 2009, Cerebral cortex.

[47]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[48]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[49]  T. Sejnowski,et al.  Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING? , 2009, Neuron.

[50]  Jude F. Mitchell,et al.  Spatial Attention Decorrelates Intrinsic Activity Fluctuations in Macaque Area V4 , 2009, Neuron.

[51]  K. D. Singh,et al.  Spectral properties of induced and evoked gamma oscillations in human early visual cortex to moving and stationary stimuli. , 2009, Journal of neurophysiology.

[52]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[53]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[54]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[55]  Derek K. Jones,et al.  Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans , 2009, Proceedings of the National Academy of Sciences.

[56]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[57]  W. Singer,et al.  Neural Synchrony in Cortical Networks: History, Concept and Current Status , 2009, Front. Integr. Neurosci..

[58]  Joonyeol Lee,et al.  A Normalization Model of Attentional Modulation of Single Unit Responses , 2009, PloS one.

[59]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[60]  Catherine Tallon-Baudry,et al.  The roles of gamma-band oscillatory synchrony in human visual cognition. , 2009, Frontiers in bioscience.

[61]  A. Thiele,et al.  Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1 , 2008, The European journal of neuroscience.

[62]  Alexander S. Ecker,et al.  Comparing the Feature Selectivity of the Gamma-Band of the Local Field Potential and the Underlying Spiking Activity in Primate Visual Cortex , 2008, Frontiers in systems neuroscience.

[63]  R. Desimone,et al.  The Effects of Visual Stimulation and Selective Visual Attention on Rhythmic Neuronal Synchronization in Macaque Area V4 , 2008, The Journal of Neuroscience.

[64]  Melanie R. Bernard,et al.  Deconstruction of Spatial Integrity in Visual Stimulus Detected by Modulation of Synchronized Activity in Cat Visual Cortex , 2008, The Journal of Neuroscience.

[65]  Nancy Kopell,et al.  Gamma Oscillations and Stimulus Selection , 2008, Neural Computation.

[66]  Xing Dajun,et al.  Searching for Autocoherence in the Cortical Network with a Time-Frequency Analysis of the Local Field Potential , 2008 .

[67]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[68]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[69]  Gareth R. Barnes,et al.  Stimuli of varying spatial scale induce gamma activity with distinct temporal characteristics in human visual cortex , 2007, NeuroImage.

[70]  W. Singer,et al.  Synchronization of Neural Activity across Cortical Areas Correlates with Conscious Perception , 2007, The Journal of Neuroscience.

[71]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[72]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[73]  W. Newsome,et al.  Local Field Potential in Cortical Area MT: Stimulus Tuning and Behavioral Correlations , 2006, The Journal of Neuroscience.

[74]  G. Buzsáki Rhythms of the brain , 2006 .

[75]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[76]  Ankoor S. Shah,et al.  An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. , 2005, Journal of neurophysiology.

[77]  R. Shapley,et al.  LFP power spectra in V1 cortex: the graded effect of stimulus contrast. , 2005, Journal of neurophysiology.

[78]  James J DiCarlo,et al.  Using neuronal latency to determine sensory-motor processing pathways in reaction time tasks. , 2005, Journal of neurophysiology.

[79]  M. A. Smith,et al.  Stimulus Dependence of Neuronal Correlation in Primary Visual Cortex of the Macaque , 2005, The Journal of Neuroscience.

[80]  J. Schoffelen,et al.  Neuronal Coherence as a Mechanism of Effective Corticospinal Interaction , 2005, Science.

[81]  Rodrigo F. Salazar,et al.  Responses to natural scenes in cat V1. , 2003, Journal of neurophysiology.

[82]  Xiao-Jing Wang,et al.  What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. , 2003, Journal of neurophysiology.

[83]  S. Thorpe,et al.  Surfing a spike wave down the ventral stream , 2002, Vision Research.

[84]  Bijan Pesaran,et al.  Temporal structure in neuronal activity during working memory in macaque parietal cortex , 2000, Nature Neuroscience.

[85]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[86]  C. Gray,et al.  Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus-dependence of gamma-band neuronal oscillations. , 2000, Cerebral cortex.

[87]  Rainer Goebel,et al.  Neural synchrony correlates with surface segregation rules , 2000, Nature.

[88]  Roman Bauer,et al.  Fast oscillations display sharper orientation tuning than slower components of the same recordings in striate cortex of the awake monkey , 2000, The European journal of neuroscience.

[89]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[90]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[91]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[92]  György Buzsáki,et al.  Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo , 1998, The European journal of neuroscience.

[93]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[94]  C. Gray,et al.  Stimulus-Dependent Neuronal Oscillations and Local Synchronization in Striate Cortex of the Alert Cat , 1997, The Journal of Neuroscience.

[95]  G. Buzsáki,et al.  Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks , 1995, Current Opinion in Neurobiology.

[96]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[97]  J. B. Levitt,et al.  Receptive fields and functional architecture of macaque V2. , 1994, Journal of neurophysiology.

[98]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[99]  John H. R. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[100]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[101]  J. Bullier,et al.  Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey. , 1989, Journal of neurophysiology.

[102]  H. Dinse,et al.  Lamina-specific differences of visual latencies following photic stimulation in the cat striate cortex , 1986, Brain Research.

[103]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[104]  R. Doty,et al.  Nongeniculate afferents to striate cortex in macaques , 1983, The Journal of comparative neurology.

[105]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[106]  J. Malpeli,et al.  The effect of striate cortex cooling on area 18 cells in the monkey , 1977, Brain Research.