Estimating cosmological parameter covariance

We investigate the bias and error in estimates of the cosmological parameter covariance matrix, due to sampling or modelling the data covariance matrix, for likelihood width and peak scatter estimators. We show that these estimators do not coincide unless the data covariance is exactly known. For sampled data covariances, with Gaussian distributed data and parameters, the parameter covariance matrix estimated from the width of the likelihood has a Wishart distribution, from which we derive the mean and covariance. This mean is biased and we propose an unbiased estimator of the parameter covariance matrix. Comparing our analytic results to a numerical Wishart sampler of the data covariance matrix we find excellent agreement. An accurate ansatz for the mean parameter covariance for the peak scatter estimator is found, and we fit its covariance to our numerical analysis. The mean is again biased and we propose an unbiased estimator for the peak parameter covariance. For sampled data covariances the width estimator is more accurate than the peak scatter estimator. We investigate modelling the data covariance, or equivalently data compression, and shown that the peak scatter estimator is less sensitive to biases in the model data covariance matrix than the width estimator, but requires independent realisations of the data to reduce the statistical error. If the model bias on the peak estimator is sufficiently low this is promising, otherwise the sampled width estimator is preferable.

[1]  Max Tegmark,et al.  Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.

[2]  S. Bridle,et al.  Probing dark energy with cluster counts and cosmic shear power spectra: including the full covariance , 2007, 0705.0163.

[3]  M. Takada,et al.  The impact of non‐Gaussian errors on weak lensing surveys , 2008, 0810.4170.

[4]  Power Spectrum Covariance of Weak Gravitational Lensing , 2000, astro-ph/0012087.

[5]  Astrophysics,et al.  The impact of baryonic processes on the two-point correlation functions of galaxies, subhaloes and matter , 2013, 1310.7571.

[6]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[7]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[8]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[9]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[10]  M. Takada,et al.  Information content of weak lensing power spectrum and bispectrum: including the non-Gaussian error covariance matrix , 2012, 1207.6322.

[11]  Benjamin Joachimi,et al.  Putting the precision in precision cosmology: How accurate should your data covariance matrix be? , 2012, 1212.4359.

[12]  C. Baugh,et al.  Statistical analysis of galaxy surveys – I. Robust error estimation for two-point clustering statistics , 2008, 0810.1885.

[13]  A. Taylor,et al.  Cosmological information in Gaussianized weak lensing signals , 2011, 1104.1399.

[14]  I. Szapudi,et al.  Shrinkage estimation of the power spectrum covariance matrix , 2007, 0711.2509.

[15]  P. Odell,et al.  A Numerical Procedure to Generate a Sample Covariance Matrix , 1966 .

[16]  H. Hoekstra,et al.  Quantifying the effect of baryon physics on weak lensing tomography , 2011, 1105.1075.

[17]  P. Schneider,et al.  A fitting formula for the non-Gaussian contribution to the lensing power spectrum covariance , 2009, 0907.1524.

[18]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[19]  P. Schneider,et al.  Cosmic shear covariance: the log-normal approximation , 2011, 1105.3980.

[20]  Scott Dodelson,et al.  The Effect of Covariance Estimator Error on Cosmological Parameter Constraints , 2013, 1304.2593.

[21]  P. Schneider,et al.  Analysis of two-point statistics of cosmic shear III. Covariances of shear measures made easy , 2007, 0708.0387.

[22]  Roberto Scaramella,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living reviews in relativity.

[23]  Ashley J. Ross,et al.  The clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: including covariance matrix errors , 2013, 1312.4841.

[24]  T. J. Page Multivariate Statistics: A Vector Space Approach , 1984 .