Fast multivariate multi-point evaluation revisited

Abstract In 2008, Kedlaya and Umans designed the first multivariate multi-point evaluation algorithm over finite fields with an asymptotic complexity that can be made arbitrarily close to linear. However, it remains a major challenge to make their algorithm efficient for practical input sizes. In this paper, we revisit and improve their algorithm, while keeping this ultimate goal in mind. In addition we sharpen the known complexity bounds for modular composition of univariate polynomials over finite fields.

[1]  Joris van der Hoeven,et al.  Relax, but Don't be Too Lazy , 2002, J. Symb. Comput..

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  A Fast Numerical Algorithm for the Composition of Power Series with Complex Coefficients , 1986, Theor. Comput. Sci..

[4]  Richard P. Brent,et al.  Fast Multiple-Precision Evaluation of Elementary Functions , 1976, JACM.

[5]  Joris van der Hoeven,et al.  On the bit-complexity of sparse polynomial and series multiplication , 2013, J. Symb. Comput..

[6]  Éric Schost,et al.  Tellegen's principle into practice , 2003, ISSAC '03.

[7]  Erich Kaltofen,et al.  Fast polynomial factorization over high algebraic extensions of finite fields , 1997, ISSAC.

[8]  Grégoire Lecerf,et al.  Modular composition via complex roots , 2017 .

[9]  Daniel J. Bernstein Composing Power Series Over a Finite Ring in Essentially Linear Time , 1998, J. Symb. Comput..

[10]  Christopher Umans,et al.  Fast Polynomial Factorization and Modular Composition , 2011, SIAM J. Comput..

[11]  Joris van der Hoeven,et al.  Multi-point evaluation in higher dimensions , 2012, Applicable Algebra in Engineering, Communication and Computing.

[12]  Éric Schost,et al.  Polynomial evaluation and interpolation on special sets of points , 2005, J. Complex..

[13]  Grégoire Lecerf On the complexity of the Lickteig-Roy subresultant algorithm , 2019, J. Symb. Comput..

[14]  Christopher Umans,et al.  Fast Modular Composition in any Characteristic , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[15]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[16]  Joris van der Hoeven,et al.  Faster integer and polynomial multiplication using cyclotomic coefficient rings , 2017, ArXiv.

[17]  J. Hoeven Faster Chinese remaindering , 2016 .

[18]  Martin Ziegler,et al.  Fast Multipoint Evaluation of Bivariate Polynomials , 2004, ESA.

[19]  Joris van der Hoeven The truncated fourier transform and applications , 2004, ISSAC '04.

[20]  Joris van der Hoeven,et al.  Modular composition via factorization , 2018, J. Complex..

[21]  H. T. Kung,et al.  Fast Algorithms for Manipulating Formal Power Series , 1978, JACM.

[22]  Joris van der Hoeven,et al.  On the Complexity Exponent of Polynomial System Solving , 2020, Found. Comput. Math..

[23]  Joris van der Hoeven,et al.  Faster integer multiplication using short lattice vectors , 2018, The Open Book Series.

[24]  Pierre Dusart,et al.  Estimates of Some Functions Over Primes without R.H. , 2010, 1002.0442.

[25]  Arnold Schönhage,et al.  Fast algorithms - a multitape Turing machine implementation , 1994 .

[26]  Arnold Schönhage,et al.  Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.

[27]  Joris van der Hoeven,et al.  Even faster integer multiplication , 2014, J. Complex..

[28]  Victor Shoup,et al.  New algorithms for finding irreducible polynomials over finite fields , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[29]  Joris van der Hoeven,et al.  Faster integer multiplication using plain vanilla FFT primes , 2016, Math. Comput..

[30]  Joris van der Hoeven Fast composition of numeric power series ∗ , 2008 .

[31]  Daniel Panario,et al.  Efficient pth root computations in finite fields of characteristic p , 2009, Des. Codes Cryptogr..

[32]  Joris van der Hoeven,et al.  Faster Polynomial Multiplication over Finite Fields , 2014, J. ACM.

[33]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[34]  Victor Shoup,et al.  Searching for primitive roots in finite fields , 1990, STOC '90.

[35]  Joris van der Hoeven,et al.  Composition Modulo Powers of Polynomials , 2017, ISSAC.

[36]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[37]  Fredrik Johansson,et al.  A fast algorithm for reversion of power series , 2011, Math. Comput..

[38]  David Harvey,et al.  Faster deterministic integer factorization , 2014, Math. Comput..

[39]  L. Bluestein A linear filtering approach to the computation of discrete Fourier transform , 1970 .

[40]  Erich Kaltofen,et al.  On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.

[41]  Victor Y. Pan,et al.  Fast Rectangular Matrix Multiplication and Applications , 1998, J. Complex..

[42]  Larry J. Stockmeyer,et al.  On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials , 1973, SIAM J. Comput..

[43]  Mark Giesbrecht,et al.  Faster sparse multivariate polynomial interpolation of straight-line programs , 2014, J. Symb. Comput..

[44]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.