暂无分享,去创建一个
Paolo Rosso | Valerio Basile | Manuela Sanguinetti | Farah Benamara | Alessandra Teresa Cignarella | Cristina Bosco | C. Bosco | M. Sanguinetti | Paolo Rosso | Valerio Basile | F. Benamara | A. T. Cignarella
[1] Efstathios Stamatatos,et al. Syntactic Dependency-Based N-grams: More Evidence of Usefulness in Classification , 2013, CICLing.
[2] Lizhen Liu,et al. Exploiting Syntactic Structures for Humor Recognition , 2018, COLING.
[3] Paolo Rosso,et al. Presenting TWITTIRÒ-UD: An Italian Twitter Treebank in Universal Dependencies , 2019, Proceedings of the Fifth International Conference on Dependency Linguistics (Depling, SyntaxFest 2019).
[4] D. Sperber,et al. Irony and the Use-Mention Distinction , 1981 .
[5] Paolo Rosso,et al. Irony Detection in a Multilingual Context , 2020, ECIR.
[6] Matthijs Douze,et al. FastText.zip: Compressing text classification models , 2016, ArXiv.
[7] Hiroshi Kanayama,et al. How Universal are Universal Dependencies? Exploiting Syntax for Multilingual Clause-level Sentiment Detection , 2020, LREC.
[8] Mariona Taulé,et al. AnCora: Multilevel Annotated Corpora for Catalan and Spanish , 2008, LREC.
[9] Peijun Du,et al. Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging , 2016, Neurocomputing.
[10] Akira Utsumi,et al. A Unified Theory of Irony and Its Computational Formalization , 1996, COLING.
[11] Benjamin Müller,et al. Building a User-Generated Content North-African Arabizi Treebank: Tackling Hell , 2020, ACL.
[12] Ildar Z. Batyrshin,et al. Complete Syntactic N-grams as Style Markers for Authorship Attribution , 2014, MICAI.
[13] Simonetta Montemagni,et al. Less is More? Towards a Reduced Inventory of Categories for Training a Parser for the Italian Stanford Dependencies , 2014, LREC.
[14] Efstathios Stamatatos,et al. Syntactic N-grams as machine learning features for natural language processing , 2014, Expert Syst. Appl..
[15] Micha Elsner,et al. Breaking NLP: Using Morphosyntax, Semantics, Pragmatics and World Knowledge to Fool Sentiment Analysis Systems , 2017 .
[16] Yijia Liu,et al. Parsing Tweets into Universal Dependencies , 2018, NAACL.
[17] Josef Ruppenhofer,et al. Treebanking User-Generated Content: A Proposal for a Unified Representation in Universal Dependencies , 2020, LREC.
[18] Samuel R. Bowman,et al. A Gold Standard Dependency Corpus for English , 2014, LREC.
[19] Grigori Sidorov,et al. Should Syntactic N-grams Contain Names of Syntactic Relations? , 2014, Int. J. Comput. Linguistics Appl..
[20] Malvina Nissim,et al. Overview of the Evalita 2014 SENTIment POLarity Classification Task , 2014 .
[21] Paolo Rosso,et al. Overview of the Task on Irony Detection in Spanish Variants , 2019, IberLEF@SEPLN.
[22] Josef Ruppenhofer,et al. tweeDe – A Universal Dependencies treebank for German tweets , 2019 .
[23] Cyril Grouin,et al. Analyse d'opinion et langage figuratif dans des tweets : présentation et résultats du Défi Fouille de Textes DEFT2017 , 2017 .
[24] Sampo Pyysalo,et al. Universal Dependencies v2: An Evergrowing Multilingual Treebank Collection , 2020, LREC.
[25] José-Ángel González,et al. ELiRF-UPV at IroSvA: Transformer Encoders for Spanish Irony Detection , 2019, IberLEF@SEPLN.
[26] Joakim Nivre,et al. Universal Dependency Annotation for Multilingual Parsing , 2013, ACL.
[27] Yoshua. Bengio,et al. Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..
[28] Christopher Potts,et al. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.
[29] Malvina Nissim,et al. Overview of the Evalita 2016 SENTIment POLarity Classification Task , 2014, CLiC-it/EVALITA.
[30] Laura A. Michaelis,et al. What is this, sarcastic syntax? , 2015 .
[31] Felice Dell'Orletta,et al. Multi-task Learning in Deep Neural Networks at EVALITA 2018 , 2018, EVALITA@CLiC-it.
[32] Paolo Rosso,et al. SemEval-2015 Task 11: Sentiment Analysis of Figurative Language in Twitter , 2015, *SEMEVAL.
[33] Omer Levy,et al. Dependency-Based Word Embeddings , 2014, ACL.
[34] Efstathios Stamatatos,et al. Syntactic Dependency-Based N-grams as Classification Features , 2012, MICAI.
[35] Paolo Rosso,et al. UPV-28-UNITO at SemEval-2019 Task 7: Exploiting Post’s Nesting and Syntax Information for Rumor Stance Classification , 2019, *SEMEVAL.
[36] Nathalie Aussenac-Gilles,et al. Towards a Contextual Pragmatic Model to Detect Irony in Tweets , 2015, ACL.
[37] Amir Zeldes,et al. A Deeper Look into Dependency-Based Word Embeddings , 2018, NAACL-HLT.
[38] Pushpak Bhattacharyya,et al. Harnessing Context Incongruity for Sarcasm Detection , 2015, ACL.
[39] Cristina Bosco,et al. PoSTWITA-UD: an Italian Twitter Treebank in Universal Dependencies , 2018, LREC.
[40] Véronique Hoste,et al. SemEval-2018 Task 3: Irony Detection in English Tweets , 2018, *SEMEVAL.
[41] Paolo Rosso,et al. Overview of the EVALITA 2018 Task on Irony Detection in Italian Tweets (IronITA) , 2018, EVALITA@CLiC-it.
[42] Alessandra Teresa Cignarella,et al. ATC at IroSvA 2019: Shallow Syntactic Dependency-based Features for Irony Detection in Spanish Variants , 2019, IberLEF@SEPLN.
[43] Chuhan Wu,et al. THU_NGN at SemEval-2018 Task 3: Tweet Irony Detection with Densely connected LSTM and Multi-task Learning , 2018, *SEMEVAL.
[44] Siobhan Chapman. Logic and Conversation , 2005 .