Nearly optimal distributed edge colouring in O(log log n) rounds

An extremely simple distributed randomized edge colouring algorithm is given which produces with high probability a proper edge colouring of a given graph G using (1 + {epsilon}){Delta} (G) colours, for any {epsilon} > 0. The algorithm is very fast. In particular, for graphs with sufficiently large vertex degrees (larger than polylog n, but smaller than any positive power of n), the algorithm requires only O(log log n) communication rounds. The algorithm is inherently distributed, but can be implemented on the PRAM, where it requires O(m{Delta}) processors and O(log {Delta} log log n) time, or in a sequential setting, where it requires O(m{Delta}) time.

[1]  Zvi Galil,et al.  NP Completeness of Finding the Chromatic Index of Regular Graphs , 1983, J. Algorithms.

[2]  Aravind Srinivasan,et al.  Fast randomized algorithms for distributed edge coloring , 1992, PODC '92.

[3]  PippengerNicholas,et al.  A fast parallel algorithm for routing in permutation networks , 1981 .

[4]  Ravi Jain,et al.  Distributed scheduling algorithms to improve the performance of parallel data transfers , 1994, CARN.

[5]  Bonnie Berger,et al.  Simulating (logcn)-wise independence in NC , 1991, JACM.

[6]  Jeong Han Kim,et al.  Nearly perfect matchings in regular simple hypergraphs , 1997 .

[7]  Ravi Jain,et al.  Scheduling Parallel I/O Operations in Multiple Bus Systems , 1992, J. Parallel Distributed Comput..

[8]  JainRavi,et al.  Distributed scheduling algorithms to improve the performance of parallel data transfers , 1994 .

[9]  Vojtech Rödl,et al.  On a Packing and Covering Problem , 1985, Eur. J. Comb..

[10]  Nancy A. Lynch,et al.  Upper Bounds for Static Resource Allocation in a Distributed System , 1981, J. Comput. Syst. Sci..

[11]  Michael Luby,et al.  A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.

[12]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[13]  Jeong Han Kim On Brooks' Theorem for Sparse Graphs , 1995, Comb. Probab. Comput..

[14]  Aravind Srinivasan,et al.  On the Complexity of Distributed Network Decomposition , 1996, J. Algorithms.

[15]  Leslie G. Valiant,et al.  A fast parallel algorithm for routing in permutation networks , 1981, IEEE Transactions on Computers.

[16]  David A. Grable,et al.  A Large Deviation Inequality for Functions of Independent, Multi-Way Choices , 1998, Combinatorics, Probability and Computing.

[17]  Aravind Srinivasan,et al.  The local nature of Δ-coloring and its algorithmic applications , 1995, Comb..

[18]  David B. Shmoys,et al.  Efficient Parallel Algorithms for Edge Coloring Problems , 1987, J. Algorithms.

[19]  Michael E. Saks,et al.  Decomposing graphs into regions of small diameter , 1991, SODA '91.

[20]  Jeff Kahn,et al.  Asymptotically Good List-Colorings , 1996, J. Comb. Theory A.

[21]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[22]  Joel H. Spencer,et al.  Asymptotic behavior of the chromatic index for hypergraphs , 1989, J. Comb. Theory, Ser. A.

[23]  Andrew V. Goldberg,et al.  Network decomposition and locality in distributed computation , 1989, 30th Annual Symposium on Foundations of Computer Science.

[24]  Moni Naor,et al.  The Probabilistic Method Yields Deterministic Parallel Algorithms , 1994, J. Comput. Syst. Sci..

[25]  Alessandro Panconesi,et al.  Near-Optimal Distributed Edge Coloring , 1995, ESA.

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.