Exploiting tensor rank-one decomposition in probabilistic inference
暂无分享,去创建一个
[1] Finn V. Jensen,et al. Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.
[3] David Heckerman,et al. A New Look at Causal Independence , 1994, UAI.
[4] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[5] S. F. Galán,et al. An e-cient factorization for the noisy MAX ⁄ , 2007 .
[6] Johan Håstad,et al. Tensor Rank is NP-Complete , 1989, ICALP.
[7] David Heckerman,et al. A Tractable Inference Algorithm for Diagnosing Multiple Diseases , 2013, UAI.
[8] Jirí Vomlel,et al. Exploiting Functional Dependence in Bayesian Network Inference , 2002, UAI.
[9] Bruce D'Ambrosio,et al. Multiplicative Factorization of Noisy-Max , 1999, UAI.
[10] L. Lathauwer,et al. On the Best Rank-1 and Rank-( , 2004 .
[11] Michael I. Jordan. Graphical Models , 2003 .
[12] E. Polak,et al. Computational methods in optimization : a unified approach , 1972 .
[13] Adnan Darwiche,et al. A differential approach to inference in Bayesian networks , 2000, JACM.
[14] Steen Andreassen,et al. A munin network for the median nerve - a case study on loops , 1989, Appl. Artif. Intell..
[15] Nevin Lianwen Zhang,et al. Exploiting Causal Independence in Bayesian Network Inference , 1996, J. Artif. Intell. Res..
[16] L. Lathauwer,et al. From Matrix to Tensor : Multilinear Algebra and Signal Processing , 1996 .
[17] Gene H. Golub,et al. Matrix Computations, Third Edition , 1996 .
[18] F. Díez,et al. An efficient factorization for the noisy MAX ∗ , 2007 .
[19] Adnan Darwiche,et al. Compiling Bayesian Networks with Local Structure , 2005, IJCAI.
[20] Gene H. Golub,et al. Matrix computations , 1983 .
[21] David Heckerman,et al. Causal Independence for Knowledge Acquisition and Inference , 1993, UAI.
[22] VandewalleJoos,et al. On the Best Rank-1 and Rank-(R1,R2,. . .,RN) Approximation of Higher-Order Tensors , 2000 .