The non-steroidal mineralocorticoid receptor antagonist finerenone and heart failure with preserved ejection fraction

[1]  T. Danne,et al.  An analysis of DPV and DIVE registry patients with chronic kidney disease according to the finerenone phase III clinical trial selection criteria , 2023, Cardiovascular Diabetology.

[2]  M. Pfeffer,et al.  Spironolactone effect on circulating procollagen type I carboxy-terminal propeptide: Pooled analysis of three randomized trials. , 2023, International journal of cardiology.

[3]  P. Mulder,et al.  Benefits of the Non-Steroidal Mineralocorticoid Receptor Antagonist Finerenone in Metabolic Syndrome-Related Heart Failure with Preserved Ejection Fraction , 2023, International journal of molecular sciences.

[4]  A. Pandey,et al.  Phenomapping in heart failure with preserved ejection fraction - insights, limitations, and future directions. , 2022, Cardiovascular research.

[5]  Weijun Huang,et al.  Network meta-analysis on the effects of finerenone versus SGLT2 inhibitors and GLP-1 receptor agonists on cardiovascular and renal outcomes in patients with type 2 diabetes mellitus and chronic kidney disease , 2022, Cardiovascular Diabetology.

[6]  M. Pfeffer,et al.  Spironolactone effect on cardiac structure and function of patients with heart failure and preserved ejection fraction: a pooled analysis of three randomized trials , 2022, European journal of heart failure.

[7]  G. Filippatos,et al.  Finerenone and Heart Failure Outcomes by Kidney Function/Albuminuria in Chronic Kidney Disease and Diabetes. , 2022, JACC. Heart failure.

[8]  M. Pfeffer,et al.  Steroidal MRA Across the Spectrum of Renal Function: A Pooled Analysis of RCTs. , 2022, JACC. Heart failure.

[9]  Akshay S. Desai,et al.  Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. , 2022, The New England journal of medicine.

[10]  J. McGill,et al.  Design of the COmbinatioN effect of FInerenone anD EmpaglifloziN in participants with chronic kidney disease and type 2 diabetes using a UACR Endpoint study (CONFIDENCE) , 2022, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[11]  M. Link,et al.  2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. , 2022, Circulation.

[12]  G. Filippatos,et al.  Finerenone in patients with chronic kidney disease and type 2 diabetes with and without heart failure: a prespecified subgroup analysis of the FIDELIO‐DKD trial , 2022, European journal of heart failure.

[13]  M. Jardine,et al.  SGLT2 inhibitors and finerenone: one or the other or both? , 2022, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[14]  G. Sinagra,et al.  [ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: what's new?] , 2022, Giornale italiano di cardiologia.

[15]  G. Bakris,et al.  Novel non‐steroidal mineralocorticoid receptor antagonists in cardiorenal disease , 2021, British journal of pharmacology.

[16]  G. Filippatos,et al.  Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis , 2021, European heart journal.

[17]  G. Filippatos,et al.  Finerenone Reduces Risk of Incident Heart Failure in Patients With Chronic Kidney Disease and Type 2 Diabetes: Analyses From the FIGARO-DKD Trial , 2021, Circulation.

[18]  G. Filippatos,et al.  Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. , 2021, The New England journal of medicine.

[19]  U. Kintscher,et al.  Nonsteroidal Mineralocorticoid Receptor Antagonism for cardiovascular and renal disorders - new perspectives for combination therapy. , 2021, Pharmacological research.

[20]  P. Ponikowski,et al.  Empagliflozin in Heart Failure with a Preserved Ejection Fraction. , 2021, The New England journal of medicine.

[21]  J. McMurray,et al.  2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. , 2021, European heart journal.

[22]  R. D. de Boer,et al.  Heart failure with preserved ejection fraction in humans and mice: embracing clinical complexity in mouse models , 2021, European heart journal.

[23]  G. Mancia,et al.  Hypertension and heart failure with preserved ejection fraction: position paper by the European Society of Hypertension , 2021, Journal of hypertension.

[24]  W. Paulus,et al.  From Systemic Inflammation to Myocardial Fibrosis , 2021, Circulation research.

[25]  G. Bakris,et al.  Effect of KBP-5074 on Blood Pressure in Advanced Chronic Kidney Disease: Results of the BLOCK-CKD Study , 2021, Hypertension.

[26]  P. Mulder,et al.  Mineralocorticoid receptor blockade with finerenone improves heart function and exercise capacity in ovariectomized mice , 2021, ESC heart failure.

[27]  D. Kass,et al.  Cellular and molecular pathobiology of heart failure with preserved ejection fraction , 2021, Nature Reviews Cardiology.

[28]  S. Ito,et al.  Esaxerenone (CS-3150) in Patients with Type 2 Diabetes and Microalbuminuria (ESAX-DN): Phase 3 Randomized Controlled Clinical Trial. , 2020, Clinical journal of the American Society of Nephrology : CJASN.

[29]  G. Bakris,et al.  Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine , 2020, European heart journal.

[30]  G. Filippatos,et al.  Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. , 2020, The New England journal of medicine.

[31]  Tadakatsu Nakamura,et al.  Phase 1 Studies to Define the Safety, Tolerability, and Pharmacokinetic and Pharmacodynamic Profiles of the Nonsteroidal Mineralocorticoid Receptor Antagonist Apararenone in Healthy Volunteers , 2020, Clinical pharmacology in drug development.

[32]  Zhuyin Li,et al.  Clinical Phenogroups in Heart Failure With Preserved Ejection Fraction: Detailed Phenotypes, Prognosis, and Response to Spironolactone. , 2020, JACC. Heart failure.

[33]  S. Ito,et al.  Double-Blind Randomized Phase 3 Study Comparing Esaxerenone (CS-3150) and Eplerenone in Patients With Essential Hypertension (ESAX-HTN Study). , 2019, Hypertension.

[34]  N. Jones,et al.  Survival of patients with chronic heart failure in the community: a systematic review and meta‐analysis , 2019, European journal of heart failure.

[35]  Akshay S. Desai,et al.  Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. , 2019, The New England journal of medicine.

[36]  Erwan Donal,et al.  How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). , 2019, European heart journal.

[37]  C. Ayers,et al.  Phenomapping of patients with heart failure with preserved ejection fraction using machine learning‐based unsupervised cluster analysis , 2019, European journal of heart failure.

[38]  Takako Shimizu,et al.  Pharmacokinetics, Metabolism, and Excretion of [14C]Esaxerenone, a Novel Mineralocorticoid Receptor Blocker in Humans , 2018, Drug Metabolism and Disposition.

[39]  R. Carter,et al.  A Simple, Evidence-Based Approach to Help Guide Diagnosis of Heart Failure With Preserved Ejection Fraction , 2018, Circulation.

[40]  P. Mulder,et al.  Short‐ and long‐term administration of the non‐steroidal mineralocorticoid receptor antagonist finerenone opposes metabolic syndrome‐related cardio‐renal dysfunction , 2018, Diabetes, obesity & metabolism.

[41]  R. Heinig,et al.  Pharmacokinetics of the Novel, Selective, Non-steroidal Mineralocorticoid Receptor Antagonist Finerenone in Healthy Volunteers: Results from an Absolute Bioavailability Study and Drug–Drug Interaction Studies In Vitro and In Vivo , 2018, European Journal of Drug Metabolism and Pharmacokinetics.

[42]  Akshay S. Desai,et al.  Incident Hyperkalemia, Hypokalemia, and Clinical Outcomes During Spironolactone Treatment of Heart Failure With Preserved Ejection Fraction: Analysis of the TOPCAT Trial. , 2018, Journal of cardiac failure.

[43]  U. Johansson,et al.  Preclinical pharmacology of AZD9977: A novel mineralocorticoid receptor modulator separating organ protection from effects on electrolyte excretion , 2018, PloS one.

[44]  R. Klopfleisch,et al.  Selective Mineralocorticoid Receptor Cofactor Modulation as Molecular Basis for Finerenone’s Antifibrotic Activity , 2018, Hypertension.

[45]  Akshay S. Desai,et al.  Spironolactone Metabolites in TOPCAT - New Insights into Regional Variation. , 2017, The New England journal of medicine.

[46]  Akshay S. Desai,et al.  Interaction Between Spironolactone and Natriuretic Peptides in Patients With Heart Failure and Preserved Ejection Fraction: From the TOPCAT Trial. , 2017, JACC. Heart failure.

[47]  Allan Klein,et al.  A Test in Context: Myocardial Strain Measured by Speckle-Tracking Echocardiography. , 2017, Journal of the American College of Cardiology.

[48]  P. Kolkhof,et al.  30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Mineralocorticoid receptor antagonists: 60 years of research and development , 2017, The Journal of endocrinology.

[49]  R. Heinig,et al.  Pharmacokinetics of the Novel Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone (BAY 94–8862) in Individuals With Renal Impairment , 2016, Clinical pharmacology in drug development.

[50]  F. Zannad,et al.  A tentative interpretation of the TOPCAT trial based on randomized evidence from the brain natriuretic peptide stratum analysis , 2016, European journal of heart failure.

[51]  D. Kass,et al.  Phenotype-Specific Treatment of Heart Failure With Preserved Ejection Fraction: A Multiorgan Roadmap , 2016, Circulation.

[52]  R. Klopfleisch,et al.  Steroidal and Nonsteroidal Mineralocorticoid Receptor Antagonists Cause Differential Cardiac Gene Expression in Pressure Overload-induced Cardiac Hypertrophy , 2016, Journal of cardiovascular pharmacology.

[53]  P. Ponikowski,et al.  A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease , 2016, European heart journal.

[54]  M. Pfeffer,et al.  Treatment of Heart Failure With Preserved Ejection Fraction: Reflections on Its Treatment With an Aldosterone Antagonist. , 2016, JAMA cardiology.

[55]  Akshay S. Desai,et al.  Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction. , 2016, European heart journal.

[56]  R. McKelvie,et al.  Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response , 2015, European journal of heart failure.

[57]  F. Eitner,et al.  Nonsteroidal antagonists of the mineralocorticoid receptor , 2015, Current opinion in nephrology and hypertension.

[58]  K. Aoki,et al.  Pharmacological profile of CS-3150, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist. , 2015, European journal of pharmacology.

[59]  M. Lombès,et al.  Finerenone Impedes Aldosterone-dependent Nuclear Import of the Mineralocorticoid Receptor and Prevents Genomic Recruitment of Steroid Receptor Coactivator-1* , 2015, The Journal of Biological Chemistry.

[60]  R. Toto,et al.  Mineralocorticoid Receptor Activation and Mineralocorticoid Receptor Antagonist Treatment in Cardiac and Renal Diseases , 2015, Hypertension.

[61]  Michael A. Burke,et al.  Phenomapping for Novel Classification of Heart Failure With Preserved Ejection Fraction , 2015, Circulation.

[62]  Akshay S. Desai,et al.  Regional Variation in Patients and Outcomes in the Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist (TOPCAT) Trial , 2015, Circulation.

[63]  F. Eitner,et al.  Finerenone, a Novel Selective Nonsteroidal Mineralocorticoid Receptor Antagonist Protects From Rat Cardiorenal Injury , 2014, Journal of cardiovascular pharmacology.

[64]  Sanjiv J Shah,et al.  Spironolactone for heart failure with preserved ejection fraction. , 2014, The New England journal of medicine.

[65]  V. Roger Epidemiology of Heart Failure , 2013, Circulation research.

[66]  P. Ponikowski,et al.  Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial , 2013, European heart journal.

[67]  R. Wachter,et al.  Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial. , 2013, JAMA.

[68]  Alexander Hillisch,et al.  Discovery of BAY 94‐8862: A Nonsteroidal Antagonist of the Mineralocorticoid Receptor for the Treatment of Cardiorenal Diseases , 2012, ChemMedChem.

[69]  P. Kolkhof,et al.  Molecular pharmacology of the mineralocorticoid receptor: Prospects for novel therapeutics , 2012, Molecular and Cellular Endocrinology.

[70]  A. Opdahl,et al.  Heart Failure with Preserved Ejection Fraction – A Review , 2012 .

[71]  J. McMurray,et al.  Eplerenone in patients with systolic heart failure and mild symptoms. , 2011, The New England journal of medicine.

[72]  R. Vasan,et al.  Epidemiology and clinical course of heart failure with preserved ejection fraction , 2011, European journal of heart failure.

[73]  N. McKenna,et al.  SnapShot: Nuclear Receptors I , 2010, Cell.

[74]  Alexander Hillisch,et al.  A New Mode of Mineralocorticoid Receptor Antagonism by a Potent and Selective Nonsteroidal Molecule* , 2010, The Journal of Biological Chemistry.

[75]  J. Beizer,et al.  Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. , 2005, The Consultant pharmacist : the journal of the American Society of Consultant Pharmacists.

[76]  B. Pitt,et al.  Eplerenone , a Selective Aldosterone Blocker , in Patients with Left Ventricular Dysfunction after Myocardial Infarction , 2003 .

[77]  B. Pitt,et al.  The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. , 1999, The New England journal of medicine.

[78]  S. Whitebread,et al.  Three new epoxy-spirolactone derivatives: characterization in vivo and in vitro. , 1987, The Journal of pharmacology and experimental therapeutics.

[79]  C. G. van Arman,et al.  Action of new steroids in blocking effects of aldosterone and desoxycorticosterone on salt. , 1957, Science.

[80]  Chow Cp Pharmacological Profile of KBP-5074, a Novel NonSteroidal Mineralocorticoid Receptor Antagonist for the Treatment of Cardiorenal Diseases , 2017 .

[81]  G. Filippatos,et al.  Steroidal and Novel Non-steroidal Mineralocorticoid Receptor Antagonists in Heart Failure and Cardiorenal Diseases: Comparison at Bench and Bedside. , 2017, Handbook of experimental pharmacology.

[82]  P. Kolkhof,et al.  30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Mineralocorticoid receptor antagonists: 60 years of research and development , 2017, The Journal of endocrinology.

[83]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..