Linear Kernels on Graphs Excluding Topological Minors

We show that problems which have finite integer index and satisfy a requirement we call treewidth-bounding admit linear kernels on the class of $H$-topological-minor free graphs, for an arbitrary fixed graph $H$. This builds on earlier results by Fomin et al.\ on linear kernels for $H$-minor-free graphs and by Bodlaender et al.\ on graphs of bounded genus. Our framework encompasses several problems, the prominent ones being Chordal Vertex Deletion, Feedback Vertex Set and Edge Dominating Set.

[1]  Rolf Niedermeier,et al.  Fixed‐parameter tractability results for full‐degree spanning tree and its dual , 2006, Networks.

[2]  Dimitrios M. Thilikos,et al.  Linear kernels for (connected) dominating set on H-minor-free graphs , 2012, SODA.

[3]  Dimitrios M. Thilikos,et al.  Rank-width and tree-width of H-minor-free graphs , 2009, Eur. J. Comb..

[4]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[5]  Jiong Guo,et al.  Fixed-Parameter Tractability Results for Full-Degree Spanning Tree and Its Dual , 2006, IWPEC.

[6]  Dimitrios M. Thilikos,et al.  Bidimensionality and kernels , 2010, SODA '10.

[7]  Saket Saurabh,et al.  A linear kernel for planar connected dominating set , 2011, Theor. Comput. Sci..

[8]  Ge Xia,et al.  Parametric Duality and Kernelization: Lower Bounds and Upper Bounds on Kernel Size , 2005, SIAM J. Comput..

[9]  Hannes Moser,et al.  The parameterized complexity of the induced matching problem , 2009, Discret. Appl. Math..

[10]  Richard B. Tan,et al.  A Linear Kernel for the k-Disjoint Cycle Problem on Planar Graphs , 2008, ISAAC.

[11]  JANOS KOMLOS,et al.  Topological cliques in graphs II , 1994, Combinatorics, Probability and Computing.

[12]  Hans L. Bodlaender,et al.  A Linear Kernel for Planar Feedback Vertex Set , 2008, IWPEC.

[13]  Rolf Niedermeier,et al.  Linear Problem Kernels for NP-Hard Problems on Planar Graphs , 2007, ICALP.

[14]  Béla Bollobás,et al.  Proof of a Conjecture of Mader, Erdös and Hajnal on Topological Complete Subgraphs , 1998, Eur. J. Comb..

[15]  Frank Harary,et al.  Graph Theory , 2016 .

[16]  Rolf Niedermeier,et al.  Polynomial-time data reduction for dominating set , 2002, JACM.

[17]  Dániel Marx Chordal Deletion is Fixed-Parameter Tractable , 2008, Algorithmica.

[18]  Ge Xia,et al.  On the induced matching problem , 2011, J. Comput. Syst. Sci..

[19]  Dániel Marx,et al.  Structure theorem and isomorphism test for graphs with excluded topological subgraphs , 2011, STOC '12.

[20]  János Komlós,et al.  Topological Cliques in Graphs , 1994, Combinatorics, Probability and Computing.