Orthotropic rotation-free basic thin shell triangle

A methodology for the geometrically nonlinear analysis of orthotropic shells using a rotation-free shell triangular element is developed. The method is based on the computation of the strain and stress fields in the principal fiber orientation of the material. Details of the definition of the fiber orientation in a mesh of triangles and of the general formulation of the orthotropic rotation-free element are given. The accuracy of the formulation is demonstrated in examples of application.

[1]  E. Ramm,et al.  Three‐dimensional extension of non‐linear shell formulation based on the enhanced assumed strain concept , 1994 .

[2]  Eugenio Oñate,et al.  Improvements in the membrane behaviour of the three node rotation-free BST shell triangle using an assumed strain approach , 2005 .

[3]  Gunnar Tibert,et al.  A Comparison of Rotation-Free Triangular Shell Elements for Unstructured Meshes , 2007 .

[4]  M. Barnes,et al.  Form Finding and Analysis of Tension Structures by Dynamic Relaxation , 1999 .

[5]  Eugenio Oñate,et al.  Rotation-free triangular plate and shell elements , 2000 .

[6]  Eugenio Oñate,et al.  Advances in the formulation of the rotation-free basic shell triangle , 2005 .

[7]  Eugenio Oñate,et al.  Non‐linear explicit dynamic analysis of shells using the BST rotation‐free triangle , 2002 .

[8]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[9]  Miguel Cervera,et al.  Derivation of thin plate bending elements with one degree of freedom per node , 1993 .

[10]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[11]  Eugenio Oñate,et al.  Application of explicit FE codes to simulation of sheet and bulk metal forming processes , 1998 .

[12]  Eugenio Oñate,et al.  A basic thin shell triangle with only translational DOFs for large strain plasticity , 2001 .

[13]  Roland Wüchner,et al.  Upgrading membranes to shells-The CEG rotation free shell element and its application in structural analysis , 2007 .

[14]  A. Ugural Stresses in plates and shells , 1981 .

[15]  E. Oñate,et al.  A rotation‐free shell triangle for the analysis of kinked and branching shells , 2007 .

[16]  Valdés Vázquez,et al.  Nonlinear Analysis of Orthotropic Membrane and Shell Structures Including Fluid-Structure Interaction. , 2007 .

[17]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[18]  P. Wriggers,et al.  A fully nonlinear multi-parameter shell model with thickness variation and a triangular shell finite element , 2004 .

[19]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[20]  Michel Brunet,et al.  Analysis of a rotation‐free 4‐node shell element , 2006 .

[21]  Rüdiger Schmidt,et al.  Finite elements based on a first-order shear deformation moderate rotation shell theory with applications to the analysis of composite structures , 1997 .

[22]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[23]  Barry Hilary Valentine Topping,et al.  Three node triangular bending elements with one degree of freedom per node , 1992 .

[24]  J. Reddy An introduction to nonlinear finite element analysis , 2004 .