Thermodynamic properties of three-ring aza-aromatics. 1. Experimental results for phenazine and acridine, and mutual validation of experiments and computational methods

Abstract Measurements leading to the calculation of thermodynamic properties for phenazine (Chemical Abstracts registry number [92-82-0]) in the ideal-gas state are reported. Experimental methods included adiabatic heat-capacity calorimetry, inclined-piston manometry, and combustion calorimetry. Thermodynamic properties for acridine (Chemical Abstracts registry number [260-94-6]) were reported previously and included those measured with adiabatic heat-capacity calorimetry, comparative ebulliometry, inclined-piston manometry, and combustion calorimetry. New measurement results for acridine reported here are densities determined with a vibrating-tube densimeter and heat capacities for the liquid phase at saturation pressure determined with a differential-scanning calorimeter (d.s.c.). All critical properties were estimated. Molar entropies for the ideal-gas state were derived for both compounds at selected temperatures. Independent calculations of entropies for the ideal-gas state were performed at the B3LYP/6-31+G(d, p) model chemistry for phenazine and acridine. These are shown to be in excellent accord with the calorimetric results. All results are compared with experimental property values reported in the literature.

[1]  W. D. Good,et al.  Thermochemistry and Vapor Pressure of Aliphatic Fluorocarbons. A Comparison of the C–F and C–H Thermochemical Bond Energies , 1959 .

[2]  F. McCrackin,et al.  Simple calibration procedures for platinum resistance thermometers from 2.5 to 14 K , 1975 .

[3]  J. Hales,et al.  Liquid densities from 293 to 490 K of nine aromatic hydrocarbons , 1972 .

[4]  W. Waring Form of a Wide-Range Vapor Pressure Equation , 1954 .

[5]  K. D. Williamson,et al.  Thermodynamic Properties of Furan , 1952 .

[6]  R. Goldberg,et al.  Conversion of temperatures and thermodynamic properties to the basis of the International Temperature Scale of 1990 (Technical Report) , 1992 .

[7]  W. D. Good Enthalpies of combustion of nine organic nitrogen compounds related to petroleum , 1972 .

[8]  R. Chirico,et al.  Reconciliation of calorimetrically and spectroscopically derived thermodynamic properties at pressures greater than 0. 1 MPa for benzene and methylbenzene: The importance of the third virial coefficient , 1994 .

[9]  R. Chirico,et al.  Thermodynamic properties of methylquinolines: Experimental results for 2,6-dimethylquinoline and mutual validation between experiments and computational methods for methylquinolines , 2007 .

[10]  J. Mccullough,et al.  Melting-point purity determinations: Limitations as evidenced by calorimetric studies in the melting region , 1957 .

[11]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0 , 2007 .

[12]  L. Riedel Die Flüssigkeitsdichte im Sättigungszustand. Untersuchungen über eine Erweiterung des Theorems der übereinstimmenden Zustände. Teil II , 1954 .

[13]  W. D. Good,et al.  Enthalpies of formation of ethylenediamine, 1,2-propanediamine, 1,2-butanediamine, 2-methyl-1,2-propanediamine, and isobutylamine. C--N and N--F thermochemical bond energies , 1970 .

[14]  Robert F. Curl,et al.  The Volumetric and Thermodynamic Properties of Fluids. III. Empirical Equation for the Second Virial Coefficient1 , 1957 .

[15]  D. Ambrose,et al.  Vapour pressures up to their critical temperatures of normal alkanes and 1-alkanols , 1989 .

[16]  W. D. Good,et al.  Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane , 1969 .

[17]  W. Acree,et al.  Enthalpies of combustion of phenazine N-oxide, phenazine, benzofuroxan, and benzofurazan: the dissociation enthalpies of the (NO) bonds , 1990 .

[18]  Wolfgang Wagner,et al.  New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations , 1973 .

[19]  R. C. Stewart,et al.  Pyrene: vapor pressure, enthalpy of combustion, and chemical thermodynamic properties☆☆☆★ , 1980 .

[20]  M. Wieser Atomic weights of the elements 2005 (IUPAC Technical Report) , 2006 .

[21]  R. Sabbah,et al.  E´tude thermodynamique de la mole´cule de phe´nazine , 1991 .

[22]  W. Steele Fifty years of thermodynamics research at Bartlesville: The Hugh M. Huffman legacy☆☆☆★ , 1995 .

[23]  R. Chirico,et al.  The thermodynamic properties of 4,5,9,10-tetrahydropyrene and of 1,2,3,6,7,8-hexahydropyrene , 1993 .

[24]  D. R. Douslin,et al.  Pressure measurements in the 0.01-30 torr range with an inclined-piston gauge , 1965 .

[25]  W. V. Steele,et al.  The thermodynamic properties of the five benzoquinolines , 1989 .

[26]  W. V. Steele,et al.  Thermodynamic properties of tert-butylbenzene and 1,4-di-tert-butylbenzene , 2009 .

[27]  H. Orbey,et al.  Correlation for the third virial coefficient using Tc, Pc and ω as parameters , 1983 .

[28]  Donald W. Scott,et al.  Combustion Calorimetry of Organic Fluorine Compounds by a Rotating-Bomb Method , 1956 .

[29]  V. A. Medvedev,et al.  CODATA key values for thermodynamics , 1989 .

[30]  S. Mastrangelo,et al.  Solid Solutions Treatment of Calorimetric Purity Data , 1955 .

[31]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .