On families of full trios containing counter machine languages

Abstract We look at nondeterministic finite automata augmented with multiple reversal-bounded counters where, during an accepting computation, the behavior of the counters is specified by some fixed pattern. These patterns can serve as a useful “bridge” to other important automata and grammar models in the theoretical computer science literature, thereby helping in their study. Various pattern behaviors are considered, together with characterizations and comparisons. For example, one such pattern defines exactly the smallest full trio containing all the bounded semilinear languages. Another pattern defines the smallest full trio containing all the bounded context-free languages. The “bridging” to other families is then applied, e.g. to certain Turing machine restrictions, as well as other families. Certain general decidability properties are also studied using this framework.

[1]  Eitan M. Gurari,et al.  The Complexity of Decision Problems for Finite-Turn Multicounter Machines , 1981, J. Comput. Syst. Sci..

[2]  Seymour Ginsburg,et al.  Abstract Families of Languages , 1967, SWAT.

[3]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[4]  Oscar H. Ibarra,et al.  Insertion Operations on Deterministic Reversal-Bounded Counter Machines , 2015, LATA.

[5]  Oscar H. Ibarra,et al.  Variations of Checking Stack Automata: Obtaining Unexpected Decidability Properties , 2018, Theor. Comput. Sci..

[6]  Sheila A. Greibach Remarks on Blind and Partially Blind One-Way Multicounter Machines , 1978, Theor. Comput. Sci..

[7]  Oscar H. Ibarra,et al.  Counter Machines and Verification Problems , 2002, Theor. Comput. Sci..

[8]  Oscar H. Ibarra,et al.  On bounded languages and reversal-bounded automata , 2016, Inf. Comput..

[9]  Sheila A. Greibach,et al.  A note on undecidable properties of formal languages , 1968, Mathematical systems theory.

[10]  Paavo Turakainen On some bounded semiAFLs and AFLs , 1981, Inf. Sci..

[11]  Seymour Ginsburg,et al.  Algebraic and Automata Theoretic Properties of Formal Languages , 1975 .

[12]  Juha Kortelainen,et al.  There Does Not Exist a Minimal Full Trio with Respect to Bounded Context-Free Languages , 2011, Developments in Language Theory.

[13]  Oscar H. Ibarra,et al.  A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems , 2003, ICALP.

[14]  Seymour Ginsburg,et al.  Derivation-Bounded Languages , 1968, J. Comput. Syst. Sci..

[15]  Oscar H. Ibarra,et al.  On the Density of Context-Free and Counter Languages , 2015, DLT.

[16]  Oscar H. Ibarra,et al.  On Bounded Semilinear Languages, Counter Machines, and Finite-Index ET0L , 2016, CIAA.

[17]  Sheila A. Greibach,et al.  Checking Automata and One-Way Stack Languages , 1969, J. Comput. Syst. Sci..

[18]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[19]  Anthony Widjaja Lin,et al.  Model Checking Recursive Programs with Numeric Data Types , 2011, CAV.

[20]  Tero Harju,et al.  Some Decision Problems Concerning Semilinearity and Commutation , 2002, J. Comput. Syst. Sci..

[21]  Oscar H. Ibarra,et al.  On Store Languages of Language Acceptors , 2017, Theor. Comput. Sci..

[22]  Oscar H. Ibarra,et al.  On Families of Full Trios Containing Counter Machine Languages , 2016, DLT.

[23]  Luca Breveglieri,et al.  Multi-Push-Down Languages and Grammars , 1996, Int. J. Found. Comput. Sci..

[24]  Zhe Dang,et al.  Binary Reachability Analysis of Pushdown Timed Automata with Dense Clocks , 2001, CAV.

[25]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[26]  Brenda S. Baker,et al.  Reversal-Bounded Multipushdown Machines , 1974, J. Comput. Syst. Sci..

[27]  Oscar H. Ibarra,et al.  Characterizations of Bounded semilinear Languages by One-Way and Two-Way Deterministic Machines , 2012, Int. J. Found. Comput. Sci..