Human centromere formation activates transcription and opens chromatin fibre structure

Human centromeres appear as constrictions on mitotic chromosomes and form a platform for kinetochore assembly in mitosis. Biophysical experiments led to a suggestion that repetitive DNA at centromeric regions form a compact scaffold necessary for function, but this was revised when neocentromeres were discovered on non-repetitive DNA. To test whether centromeres have a special chromatin structure we have analysed the architecture of a neocentromere. Centromere formation is accompanied by RNA pol II recruitment and active transcription to form a decompacted, negatively supercoiled domain enriched in ‘open’ chromatin fibres. In contrast, centromerisation causes a spreading of repressive epigenetic marks to surrounding regions, delimited by H3K27me3 polycomb boundaries and divergent genes. This flanking domain is transcriptionally silent and partially remodelled to form ‘compact’ chromatin, similar to satellite-containing DNA sequences, and exhibits genomic instability. We suggest transcription disrupts chromatin to provide a foundation for kine-tochore formation whilst compact pericentromeric heterochromatin generates mechanical rigidity.

[1]  I. Izeddin,et al.  Epigenetic rewriting at centromeric DNA repeats leads to increased chromatin accessibility and chromosomal instability , 2021, bioRxiv.

[2]  L. Jansen,et al.  Induction of spontaneous human neocentromere formation and long-term maturation , 2021, The Journal of cell biology.

[3]  B. Fierz,et al.  The elusive structure of centro-chromatin: molecular order or dynamic heterogenetity? , 2020, Journal of molecular biology.

[4]  Karen H. Miga,et al.  Centromere studies in the era of 'telomere-to-telomere' genomics. , 2020, Experimental cell research.

[5]  N. Gilbert,et al.  Centromere chromatin structure - Lessons from neocentromeres. , 2020, Experimental cell research.

[6]  D. Gerlich,et al.  Organization of Chromatin by Intrinsic and Regulated Phase Separation , 2019, Cell.

[7]  J. Rappsilber,et al.  Hap2–Ino80-facilitated transcription promotes de novo establishment of CENP-A chromatin , 2019, bioRxiv.

[8]  N. Gilbert,et al.  Role of nuclear RNA in regulating chromatin structure and transcription , 2019, Current opinion in cell biology.

[9]  M. J. Neale,et al.  Convergent genes shape budding yeast pericentromeres , 2019, bioRxiv.

[10]  T. Itoh,et al.  3D genomic architecture reveals that neocentromeres associate with heterochromatin regions , 2019, The Journal of cell biology.

[11]  Pin Tong,et al.  Centromere DNA Destabilizes H3 Nucleosomes to Promote CENP-A Deposition during the Cell Cycle , 2018, Current Biology.

[12]  Matthew A. Watson,et al.  Highly disordered histone H1−DNA model complexes and their condensates , 2018, Proceedings of the National Academy of Sciences.

[13]  Karen E Gascoigne,et al.  Enhancer Activity Requires CBP/P300 Bromodomain-Dependent Histone H3K27 Acetylation. , 2018, Cell reports.

[14]  N. Gilbert,et al.  Centromere transcription allows CENP-A to transit from chromatin association to stable incorporation , 2018, The Journal of cell biology.

[15]  Shannon M. McNulty,et al.  Human Centromeres Produce Chromosome-Specific and Array-Specific Alpha Satellite Transcripts that Are Complexed with CENP-A and CENP-C. , 2017, Developmental cell.

[16]  Mustafa Mir,et al.  Phase separation drives heterochromatin domain formation , 2017, Nature.

[17]  Alma L. Burlingame,et al.  Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin , 2017, Nature.

[18]  E. Eichler,et al.  Epigenetic origin of evolutionary novel centromeres , 2017, Scientific Reports.

[19]  A. Fujiyama,et al.  Constitutive centromere-associated network controls centromere drift in vertebrate cells , 2017, The Journal of cell biology.

[20]  Oscar Molina,et al.  Epigenetic engineering reveals a balance between histone modifications and transcription in kinetochore maintenance , 2016, Nature Communications.

[21]  J. Bednar,et al.  The Flexible Ends of CENP-A Nucleosome Are Required for Mitotic Fidelity. , 2016, Molecular cell.

[22]  D. Cleveland,et al.  DNA Sequence-Specific Binding of CENP-B Enhances the Fidelity of Human Centromere Function. , 2015, Developmental cell.

[23]  Pedro P. Rocha,et al.  CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation , 2015, Science.

[24]  K. Sullivan,et al.  Centromere sliding on a mammalian chromosome , 2014, Chromosoma.

[25]  A. Fujiyama,et al.  Histone H4 Lys 20 Monomethylation of the CENP-A Nucleosome Is Essential for Kinetochore Assembly , 2014, Developmental cell.

[26]  James Allan,et al.  Supercoiling in DNA and chromatin☆ , 2014, Current opinion in genetics & development.

[27]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[28]  Y. Xi,et al.  Plasticity and Epigenetic Inheritance of Centromere-specific Histone H3 (CENP-A)-containing Nucleosome Positioning in the Fission Yeast* , 2013, The Journal of Biological Chemistry.

[29]  S. Cockroft,et al.  Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures , 2013, Nature Structural &Molecular Biology.

[30]  V. Noskov,et al.  Breaking the HAC Barrier: Histone H3K9 acetyl/methyl balance regulates CENP-A assembly , 2012, The EMBO journal.

[31]  Owen J. Marshall,et al.  Active transcription and essential role of RNA polymerase II at the centromere during mitosis , 2012, Proceedings of the National Academy of Sciences.

[32]  H. Kimura,et al.  Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function , 2012, Journal of Cell Science.

[33]  N. Archidiacono,et al.  Centromere repositioning in mammals , 2011, Heredity.

[34]  S. Dimitrov,et al.  Histone H3 trimethylation at lysine 36 is associated with constitutive and facultative heterochromatin. , 2011, Genome research.

[35]  B. E. Black,et al.  Epigenetic Centromere Propagation and the Nature of CENP-A Nucleosomes , 2011, Cell.

[36]  Albert J. Vilella,et al.  Comparative and demographic analysis of orang-utan genomes , 2011, Nature.

[37]  Hiroshi Kimura,et al.  Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore , 2010, The EMBO journal.

[38]  N. Gilbert,et al.  Analysis of Active and Inactive X Chromosome Architecture Reveals the Independent Organization of 30 nm and Large-Scale Chromatin Structures , 2010, Molecular cell.

[39]  Kevan J. Salimian,et al.  Epigenetic centromere specification directs aurora B accumulation but is insufficient to efficiently correct mitotic errors , 2010, The Journal of cell biology.

[40]  Christopher W Carroll,et al.  Dual recognition of CENP-A nucleosomes is required for centromere assembly , 2010, The Journal of cell biology.

[41]  W. Earnshaw,et al.  A super-resolution map of the vertebrate kinetochore , 2010, Proceedings of the National Academy of Sciences.

[42]  C. Topp,et al.  DNA Binding of Centromere Protein C (CENPC) Is Stabilized by Single-Stranded RNA , 2010, PLoS genetics.

[43]  J. N. MacLeod,et al.  Genome Sequence, Comparative Analysis, and Population Genetics of the Domestic Horse , 2009, Science.

[44]  S. Henikoff,et al.  Centromeric Nucleosomes Induce Positive DNA Supercoils , 2009, Cell.

[45]  G. D. Valle,et al.  The C-Terminal Domain of CENP-C Displays Multiple and Critical Functions for Mammalian Centromere Formation , 2009, PloS one.

[46]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[47]  Jesse C. Gatlin,et al.  Condensin regulates the stiffness of vertebrate centromeres. , 2009, Molecular biology of the cell.

[48]  Colin Logie,et al.  Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber , 2009, Nature Structural &Molecular Biology.

[49]  Dustin E. Schones,et al.  Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. , 2008, Genome research.

[50]  V. Noskov,et al.  Inactivation of a Human Kinetochore by Specific Targeting of Chromatin Modifiers , 2008, Developmental cell.

[51]  Rodolfo Ghirlando,et al.  Hydrodynamic studies on defined heterochromatin fragments support a 30-nm fiber having six nucleosomes per turn. , 2008, Journal of molecular biology.

[52]  Francesca Antonacci,et al.  Evolutionary Formation of New Centromeres in Macaque , 2007, Science.

[53]  S. Henikoff,et al.  Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[54]  G. Karpen,et al.  Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin , 2004, Nature Structural &Molecular Biology.

[55]  Nick Gilbert,et al.  Chromatin Architecture of the Human Genome Gene-Rich Domains Are Enriched in Open Chromatin Fibers , 2004, Cell.

[56]  E. Eichler,et al.  Recurrent sites for new centromere seeding. , 2004, Genome research.

[57]  G. Almouzni,et al.  Mouse centric and pericentric satellite repeats form distinct functional heterochromatin , 2004, The Journal of cell biology.

[58]  K. Sullivan,et al.  Centromeres and Kinetochores From Epigenetics to Mitotic Checkpoint Signaling , 2003, Cell.

[59]  Gary H Karpen,et al.  Conserved organization of centromeric chromatin in flies and humans. , 2002, Developmental cell.

[60]  T. Jenuwein,et al.  Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component , 2002, Nature Genetics.

[61]  N. Gilbert,et al.  Distinctive higher-order chromatin structure at mammalian centromeres , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[62]  K. Choo,et al.  Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. , 2000, Human molecular genetics.

[63]  N. Tommerup,et al.  A neocentromere on human chromosome 3 without detectable α-satellite DNA forms morphologically normal kinetochores , 1998, Chromosoma.

[64]  S. Schwartz,et al.  Characterization of neo-centromeres in marker chromosomes lacking detectable alpha-satellite DNA. , 1997, Human molecular genetics.

[65]  L. Voullaire,et al.  A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? , 1993, American journal of human genetics.

[66]  W. Hörz,et al.  Reconstitution experiments show that sequence-specific histone-DNA interactions are the basis for nucleosome phasing on mouse satellite DNA , 1985, Cell.

[67]  F. Fittler,et al.  Sequence specific cleavage of African green monkey alpha-satellite DNA by micrococcal nuclease , 1983, Nucleic Acids Res..

[68]  T. Fukagawa,et al.  Critical Foundation of the Kinetochore: The Constitutive Centromere-Associated Network (CCAN). , 2017, Progress in molecular and subcellular biology.

[69]  H. Kimura,et al.  The organization of histone H3 modifications as revealed by a panel of specific monoclonal antibodies. , 2008, Cell structure and function.

[70]  D. Miller,et al.  A cloned sequence, p82H, of the alphoid repeated DNA family found at the centromeres of all human chromosomes , 2004, Chromosoma.

[71]  C. Lottaz,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[72]  H. Willard Chromosome-specific organization of human alpha satellite DNA. , 1985, American journal of human genetics.