Calcite (101¯4) surface in humid environments

[1]  S. Martin,et al.  Surface-potential heterogeneity of reacted calcite and rhodochrosite. , 2007, Environmental science & technology.

[2]  C. Usher,et al.  Reactions of sulfur dioxide on calcium carbonate single crystal and particle surfaces at the adsorbed water carbonate interface. , 2007, Physical chemistry chemical physics : PCCP.

[3]  C. Usher,et al.  Spatially resolved product formation in the reaction of formic acid with calcium carbonate (1014): the role of step density and adsorbed water-assisted ion mobility. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[4]  S. Martin,et al.  Water-induced reconstruction that affects mobile ions on the surface of calcite. , 2007, Journal of Physical Chemistry A.

[5]  R. Reeder,et al.  Humidity-induced restructuring of the calcite surface and the effect of divalent heavy metals. , 2007, Journal of colloid and interface science.

[6]  J. Dickinson,et al.  Scanning-induced growth on single crystal calcite with an atomic force microscope. , 2006, Langmuir.

[7]  Yinon Rudich,et al.  Direct observation of completely processed calcium carbonate dust particles. , 2005, Faraday discussions.

[8]  J. Tascón,et al.  Nanoscale investigation of the structural and chemical changes induced by oxidation on carbon black surfaces: a scanning probe microscopy approach. , 2005, Journal of colloid and interface science.

[9]  V. Grassian,et al.  Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: a transmission and ATR-FTIR study. , 2005, Physical chemistry chemical physics : PCCP.

[10]  S. Martin,et al.  Heteroepitaxial nucleation and oriented growth of manganese oxide islands on carbonate minerals under aqueous conditions. , 2005, Environmental science & technology.

[11]  P. Unwin,et al.  Atomic force microscopy investigation of the mechanism of calcite microcrystal growth under Kitano conditions. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[12]  D. Faivre,et al.  The influence of dissolved humic acids on the kinetics of calcite precipitation from seawater solutions , 2003 .

[13]  V. Grassian,et al.  Phase transitions in calcium nitrate thin films. , 2003, Chemical communications.

[14]  V. Grassian,et al.  Phase Transitions in Magnesium Nitrate Thin Films: A Transmission FT-IR Study of the Deliquescence and Efflorescence of Nitric Acid Reacted Magnesium Oxide Interfaces , 2003 .

[15]  P. Unwin,et al.  In situ observation of the surface processes involved in dissolution from the cleavage surface of calcite in aqueous solution using combined scanning electrochemical-atomic force microscopy (SECM-AFM). , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[16]  J. Morse,et al.  The dissolution kinetics of major sedimentary carbonate minerals , 2002 .

[17]  L. Nony,et al.  Dissipation induced by attractive interaction in dynamic force microscopy: contribution of adsorbed water layers , 2002, physics/0510097.

[18]  O. Pokrovsky,et al.  Surface chemistry and dissolution kinetics of divalent metal carbonates. , 2002, Environmental science & technology.

[19]  C. Gabrielli,et al.  Characterization of CaCO3 hydrates by micro‐Raman spectroscopy , 2002 .

[20]  L. Nony,et al.  Influence of noncontact dissipation in the tapping mode: Attempt to extract quantitative information on the surface properties with the local force probe method , 2001, physics/0510098.

[21]  J. Amonette,et al.  Microscopic effects of carbonate, manganese, and strontium ions on calcite dissolution , 2001 .

[22]  Javier Tamayo,et al.  Interpretation of phase contrast in tapping mode AFM and shear force microscopy: a study of Nafion , 2001 .

[23]  P. Leclère,et al.  Quantitative Measurement of the Mechanical Contribution to Tapping-Mode Atomic Force Microscopy Images of Soft Materials , 2000 .

[24]  O. Pokrovsky,et al.  Surface speciation models of calcite and dolomite/aqueous solution interfaces and their spectroscopic evaluation , 2000 .

[25]  S. Stipp Toward a conceptual model of the calcite surface: hydration, hydrolysis, and surface potential , 1999 .

[26]  M. Whangbo,et al.  Effect of viscoelastic properties of polymers on the phase shift in tapping mode atomic force microscopy , 1998 .

[27]  A. Kulik,et al.  Spontaneous movement of ions through calcite at standard temperature and pressure , 1998, Nature.

[28]  Ricardo Garcia,et al.  Phase contrast in tapping-mode scanning force microscopy , 1998 .

[29]  Myung-Hwan Whangbo,et al.  Phase imaging and stiffness in tapping-mode atomic force microscopy , 1997 .

[30]  S. Stipp,et al.  The dynamic nature of calcite surfaces in air , 1996 .

[31]  R. Rosenbauer,et al.  The Solubility and Stabilization of Ikaite (CaCO3·6H2O) from 0° to 25°C: Environmental and Paleoclimatic Implications for Thinolite Tufa , 1993, The Journal of Geology.

[32]  J. Clarkson,et al.  Role of metastable phases in the spontaneous precipitation of calcium carbonate , 1992 .

[33]  M. Hochella,et al.  Structure and bonding environments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) , 1991 .

[34]  L. Brečević,et al.  Solubility of amorphous calcium carbonate , 1989 .

[35]  J. Jansen,et al.  Ikaite pseudomorphs in the Zaire deep-sea fan: An intermediate between calcite and porous calcite , 1987 .

[36]  W. Balzer,et al.  Calcium Carbonate Hexahydrate from Organic-Rich Sediments of the Antarctic Shelf: Precursors of Glendonites , 1982, Science.

[37]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .

[38]  E. Thurston,et al.  Calcium carbonate and its hydrates , 1950, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.