Explicit control of subgeometric ergodicity

This paper discusses explicit quantitative bounds on the convergence rates of Markov chains on general state spaces, under so-called drift and minorization conditions. The focus of this paper is on practical conditions that lead to subgeometric rates. Such explicit bounds are particularly relevant in applications where a family of Markov transition probabilities {Pθ : θ ∈ Θ} is considered and for which it is required to establish uniform-in-θ ergodicity. Examples of applications include stochastic versions of the popular EM algorithm (Expectation-Maximization) or adaptive Markov chain Monte Carlo (MCMC) algorithms (see [1] (resp. [14]) where quantitative bounds for geometric ergodicity (resp. geometric and subgeometric ergodicity) are used to establish the validity of the algorithms).

[1]  E. Nummelin,et al.  The rate of convergence in Orey's theorem for Harris recurrent Markov chains with applications to renewal theory , 1983 .

[2]  A. Sapozhnikov Subgeometric rates of convergence of f-ergodic Markov chains , 2006 .

[3]  Gareth O. Roberts,et al.  Corrigendum to : Bounds on regeneration times and convergence rates for Markov chains , 2001 .

[4]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[5]  P. Baxendale Renewal theory and computable convergence rates for geometrically ergodic Markov chains , 2005, math/0503515.

[6]  R. Douc,et al.  Quantitative bounds on convergence of time-inhomogeneous Markov chains , 2004, math/0503532.

[7]  Computable bounds for V-geometric ergodicity of Markov transition kernels , 2003 .

[8]  G. Roberts,et al.  Polynomial convergence rates of Markov chains. , 2002 .

[9]  S. Meyn,et al.  Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .

[10]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[11]  S. Wainger,et al.  One-sided error estimates in renewal theory , 1967 .

[12]  Convex Functions and Orlicz Spaces (M. A. Krasnoesl’skii and Ya. B. Rutickii) , 1963 .

[13]  Jeffrey S. Rosenthal,et al.  Coupling and Ergodicity of Adaptive MCMC , 2007 .

[14]  É. Moulines,et al.  Polynomial ergodicity of Markov transition kernels , 2003 .

[15]  H. Thorisson The queue GI/G/1: Finite moments of the cycle variables and uniform rates of convergence☆ , 1985 .

[16]  R. Douc,et al.  Practical drift conditions for subgeometric rates of convergence , 2004, math/0407122.

[17]  E. MOULINESE COMPUTABLE BOUNDS FOR SUBGEOMETRICAL AND GEOMETRICAL ERGODICITY , 2000 .

[18]  C. Andrieu,et al.  On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.

[19]  G. Fort,et al.  Contrôle explicite d'ergodicité de chaîne de Markov : applications à l'analyse de convergence de l'algorithme Monte-Carlo EM , 2001 .

[20]  A. Tanikawa On the rate of convergence of Borovkov's multidimensional ergodic Markov chain , 1997, Journal of Applied Probability.