Explicit control of subgeometric ergodicity
暂无分享,去创建一个
[1] E. Nummelin,et al. The rate of convergence in Orey's theorem for Harris recurrent Markov chains with applications to renewal theory , 1983 .
[2] A. Sapozhnikov. Subgeometric rates of convergence of f-ergodic Markov chains , 2006 .
[3] Gareth O. Roberts,et al. Corrigendum to : Bounds on regeneration times and convergence rates for Markov chains , 2001 .
[4] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[5] P. Baxendale. Renewal theory and computable convergence rates for geometrically ergodic Markov chains , 2005, math/0503515.
[6] R. Douc,et al. Quantitative bounds on convergence of time-inhomogeneous Markov chains , 2004, math/0503532.
[7] Computable bounds for V-geometric ergodicity of Markov transition kernels , 2003 .
[8] G. Roberts,et al. Polynomial convergence rates of Markov chains. , 2002 .
[9] S. Meyn,et al. Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .
[10] J. Rosenthal. Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .
[11] S. Wainger,et al. One-sided error estimates in renewal theory , 1967 .
[12] Convex Functions and Orlicz Spaces (M. A. Krasnoesl’skii and Ya. B. Rutickii) , 1963 .
[13] Jeffrey S. Rosenthal,et al. Coupling and Ergodicity of Adaptive MCMC , 2007 .
[14] É. Moulines,et al. Polynomial ergodicity of Markov transition kernels , 2003 .
[15] H. Thorisson. The queue GI/G/1: Finite moments of the cycle variables and uniform rates of convergence☆ , 1985 .
[16] R. Douc,et al. Practical drift conditions for subgeometric rates of convergence , 2004, math/0407122.
[17] E. MOULINESE. COMPUTABLE BOUNDS FOR SUBGEOMETRICAL AND GEOMETRICAL ERGODICITY , 2000 .
[18] C. Andrieu,et al. On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.
[19] G. Fort,et al. Contrôle explicite d'ergodicité de chaîne de Markov : applications à l'analyse de convergence de l'algorithme Monte-Carlo EM , 2001 .
[20] A. Tanikawa. On the rate of convergence of Borovkov's multidimensional ergodic Markov chain , 1997, Journal of Applied Probability.