Sustainable preparation of supported metal nanoparticles and their applications in catalysis.

Metal nanoparticles have attracted much attention over the last decade owing to their unique properties as compared to their bulk metal equivalents, including a large surface-to-volume ratio and tunable shapes. To control the properties of nanoparticles with particular respect to shape, size and dispersity is imperative, as these will determine the activity in the desired application. Supported metal nanoparticles are widely employed in catalysis. Recent advances in controlling the shape and size of nanoparticles have opened the possibility to optimise the particle geometry for enhanced catalytic activity, providing the optimum size and surface properties for specific applications. This Review describes the state of the art with respect to the preparation and use of supported metal nanoparticles in catalysis. The main groups of such nanoparticles (noble and transition metal nanoparticles) are highlighted and future prospects are discussed.

[1]  Xiaolai Wang,et al.  Gold nanoparticles in mesoporous materials showing catalytic selective oxidation cyclohexane using oxygen , 2005 .

[2]  G. Neri,et al.  Gold catalysts for the liquid phase oxidation of o-hydroxybenzyl alcohol , 2001 .

[3]  A. Biffis,et al.  Functional resins in palladium catalysis: promising materials for Heck reaction in aprotic polar solvents , 2005 .

[4]  M. Haruta,et al.  Vital role of moisture in the catalytic activity of supported gold nanoparticles. , 2004, Angewandte Chemie.

[5]  Anusorn Kongkanand,et al.  Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[6]  L. Juang,et al.  Sonoelectrochemical methods of preparing silver-coated TiO2 nanoparticles with extremely high coverage , 2004 .

[7]  Can Erkey,et al.  Preparation of supported metallic nanoparticles using supercritical fluids: A review , 2006 .

[8]  Jinjun Li,et al.  Nanoporous silica-supported nanometric palladium: synthesis, characterization, and catalytic deep oxidation of benzene. , 2005, Environmental science & technology.

[9]  F. Bautista,et al.  Influence of NiCu alloying on Sepiolite-supported nickel catalysts in the liquid-phase selective hydrogenation of fatty acid ethyl esters , 1996 .

[10]  C. Correa,et al.  Catalytic hydrodechlorination of dichloromethane in the presence of traces of chloroform and tetrachloroethylene , 2008 .

[11]  Seong-Ho Yoon,et al.  Chemoselective hydrogenation of nitroarenes with carbon nanofiber-supported platinum and palladium nanoparticles. , 2008, Organic letters.

[12]  Oxidant-free alcohol dehydrogenation using a reusable hydrotalcite-supported silver nanoparticle catalyst. , 2008, Angewandte Chemie.

[13]  K. Ebitani,et al.  Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. , 2004, Journal of the American Chemical Society.

[14]  R. Fehrmann,et al.  Titania-supported Pt and Pt–Pd nanoparticle catalysts for the oxidation of sulfur dioxide , 2006 .

[15]  Avelino Corma,et al.  Catalytic activity of palladium supported on single wall carbon nanotubes compared to palladium supported on activated carbon: Study of the Heck and Suzuki couplings, aerobic alcohol oxidation and selective hydrogenation , 2005 .

[16]  Ashley J. Wilson,et al.  Starbons: new starch-derived mesoporous carbonaceous materials with tunable properties. , 2006, Angewandte Chemie.

[17]  C. Wai,et al.  Microemulsion-templated synthesis of carbon nanotube-supported pd and rh nanoparticles for catalytic applications. , 2005, Journal of the American Chemical Society.

[18]  J. Watkins,et al.  Chemical Fluid Deposition: A Hybrid Technique for Low‐Temperature Metallization , 2000 .

[19]  K. Sasaki,et al.  Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters , 2007, Science.

[20]  Aharon Gedanken,et al.  Using sonochemistry for the fabrication of nanomaterials. , 2004, Ultrasonics sonochemistry.

[21]  Jonathan S. Dordick,et al.  Protein‐Directed Formation of Silver Nanoparticles on Carbon Nanotubes , 2007 .

[22]  M. Prato,et al.  Chemistry of carbon nanotubes. , 2006, Chemical reviews.

[23]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[24]  Jianjun Yang,et al.  PREPARATION OF Au-LOADED TiO2 BY PHOTOCHEMICAL DEPOSITION AND OZONE PHOTOCATALYTIC DECOMPOSITION , 2006 .

[25]  Luke M. Neal,et al.  C–H activation and C–C coupling of 4-methylpyridine using palladium supported on nanoparticle alumina , 2008 .

[26]  T. Luh,et al.  Polymeric phosphine ligand from ring-opening metathesis polymerization of a norbornene derivative. Applications in the Heck, Sonogashira, and Negishi reactions. , 2003, Journal of Organic Chemistry.

[27]  I. Koptyug,et al.  Observation of parahydrogen-induced polarization in heterogeneous hydrogenation on supported metal catalysts. , 2008, Angewandte Chemie.

[28]  Rafael Luque,et al.  Towards a bio-based industry: benign catalytic esterifications of succinic acid in the presence of water. , 2007, Chemistry.

[29]  J. Čejka,et al.  The use of palladium nanoparticles supported on MCM-41 mesoporous molecular sieves in Heck reaction : A comparison of basic and neutral supports , 2007 .

[30]  Y. Sunagawa,et al.  Liquid-phase reductive deposition as a novel nanoparticle synthesis method and its application to supported noble metal catalyst preparation , 2008 .

[31]  F. Markey Principles of Surface Plasmon Resonance , 2000 .

[32]  H. Oyamada,et al.  Polysilane-supported Pd and Pt nanoparticles as efficient catalysts for organic synthesis. , 2006, Chemical communications.

[33]  R. Kooyman Chapter 2:Physics of Surface Plasmon Resonance , 2008 .

[34]  A. Corma,et al.  Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts , 2006, Science.

[35]  J. C. Serrano-Ruiz,et al.  Hydrogenation of α, β unsaturated aldehydes over polycrystalline, (111) and (100) preferentially oriented Pt nanoparticles supported on carbon , 2008 .

[36]  A. Sayari,et al.  Applications of pore-expanded mesoporous silica 6. Novel synthesis of monodispersed supported palladium nanoparticles and their catalytic activity for suzuki reaction , 2007 .

[37]  Xinhe Bao,et al.  Reactions over catalysts confined in carbon nanotubes. , 2008, Chemical communications.

[38]  J. Clark,et al.  Versatile mesoporous carbonaceous materials for acid catalysis. , 2007, Chemical communications.

[39]  Arturo Martínez-Arias,et al.  Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling. , 2007, Nature materials.

[40]  Shimon Weiss,et al.  Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots† , 2001 .

[41]  A. Gedanken,et al.  Synthesis of metallic magnesium nanoparticles by sonoelectrochemistry. , 2008, Chemical communications.

[42]  Absar Ahmad,et al.  Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloevera Plant Extract , 2006, Biotechnology progress.

[43]  Dongye Zhao,et al.  Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. , 2005, Environmental science & technology.

[44]  Feng Lu,et al.  Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. , 2005, Angewandte Chemie.

[45]  M. Aramendía,et al.  Individual and competitive liquid-phase hydrodechlorination of chlorinated pyridines over alkali-modified Pd/ZrO2 , 2007 .

[46]  T. Akita,et al.  Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts , 2002 .

[47]  Thomas E. Mallouk,et al.  Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater , 2004 .

[48]  Andrew M. Beale,et al.  Effect of the impregnation order on the nature of metal particles of bi-functional Pt/Pd-supported zeolite Beta materials and on their catalytic activity for the hydroisomerization of alkanes , 2008 .

[49]  G. Hutchings,et al.  Au–Pd supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H2 and O2 , 2008 .

[50]  D. Luna,et al.  solRhAlPO4 Catalysts: IX. Liquid-phase hydrogenation and isomerization of α,β-unsaturated alcohols , 1988 .

[51]  M. Pagliaro,et al.  From glycerol to value-added products. , 2007, Angewandte Chemie.

[52]  R. Bal,et al.  Surfactant-promoted novel synthesis of supported metallic Cu nanoparticles active for selective dehydrogenation of methanol , 2006 .

[53]  Masashi Takahashi,et al.  Studies on gold nanoparticles supported on iron, cobalt, manganese, and cerium oxide catalytic materials , 2005 .

[54]  M. S. El-shall,et al.  Vapor phase synthesis of supported Pd, Au, and unsupported bimetallic nanoparticle catalysts for CO oxidation , 2006 .

[55]  M. Bettahar,et al.  Study of nickel nanoparticles supported on activated carbon prepared by aqueous hydrazine reduction. , 2006, Journal of colloid and interface science.

[56]  D. Luna,et al.  Liquid-phase hydrogenation of 1-alkenes over Rh/AlPO4 and Rh/sepiolite catalysts , 1993 .

[57]  Wolf-Dieter Schneider,et al.  Size-dependent molecular dissociation on mass-selected, supported metal clusters , 1998 .

[58]  H. Yoshida,et al.  Formation of nanoarchitectures including subnanometer palladium clusters and their use as highly active catalysts. , 2005, Journal of the American Chemical Society.

[59]  M. Antonietti,et al.  Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon. , 2008, Chemical communications.

[60]  R. Kaner,et al.  Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water. , 2007, Angewandte Chemie.

[61]  R. Kumar,et al.  Characterization and catalytic activity of gold nanoparticles synthesized by autoreduction of aqueous chloroaurate ions with fumed silica , 2002 .

[62]  Aiqin Wang,et al.  CO oxidation catalyzed by gold nanoparticles confined in mesoporous aluminosilicate Al-SBA-15: Pretreatment methods , 2006 .

[63]  M. Claeys,et al.  Experimental approaches to the preparation of supported metal nanoparticles , 2006 .

[64]  J. Arias-Pardilla,et al.  Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers , 2008 .

[65]  S. Galvagno,et al.  Novel Pt0 catalysts supported on functional resins for the chemoselective hydrogenation of citral to the α,β-unsaturated alcohols geraniol and nerol , 2005 .

[66]  R. Luque,et al.  A Simple and Efficient Route to Active and Dispersed Silica Supported Palladium Nanoparticles , 2008 .

[67]  M. Bettahar,et al.  Nickel Nanoparticles Supported on Silica of Low Surface Area. Hydrogen Chemisorption and TPD and Catalytic Properties , 2002 .

[68]  Jun-Jie Zhu,et al.  Microwave Assisted Preparation of CdSe, PbSe, and Cu2-xSe Nanoparticles , 2000 .

[69]  Chun-yan Liu,et al.  Catalytic properties of silver nanoparticles supported on silica spheres. , 2005, The journal of physical chemistry. B.

[70]  A. Corma,et al.  A Molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: a cooperative effect between gold and the support. , 2007, Journal of the American Chemical Society.

[71]  R. Schasfoort,et al.  Handbook of surface plasmon resonance , 2008 .

[72]  H. Alper,et al.  Platinum Nanoparticles Supported on Ionic Liquid‐Modified Magnetic Nanoparticles: Selective Hydrogenation Catalysts , 2007 .

[73]  K. R. Rao,et al.  Studies on the modifications of Pd/Al2O3 and Pd/C systems to design highly active catalysts for hydrodechlorination of CFC-12 to HFC-32 , 2004 .

[74]  Hong Yang,et al.  Testing Nanomaterials of Unknown Toxicity: An Example Based on Platinum Nanoparticles of Different Shapes , 2007 .

[75]  C. Clausen A Mssbauer study of automotive emission control catalysts , 1977 .

[76]  M. A. Zabelin,et al.  New size effect in the catalysis by interacting copper nanoparticles , 2005 .

[77]  A. Gómez-Cortés,et al.  Gold nanoparticles: Support effects for the WGS reaction , 2007 .

[78]  A. Corma,et al.  Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: the molecular reaction mechanism. , 2008, Chemistry.

[79]  Chenglin Sun,et al.  Catalysts for aromatics hydrogenation in presence of sulfur: reactivities of nanoparticles of ruthenium metal and sulfide dispersed in acidic Y zeolites , 2003 .

[80]  C. Erkey,et al.  Supported Platinum Nanoparticles by Supercritical Deposition , 2005 .

[81]  V. Grassian,et al.  A Comprehensive Study of the Reactions of Methyl Fragments from Methyl Iodide Dissociation on Reduced and Oxidized Silica-Supported Copper Nanoparticles , 1997 .

[82]  Minghui Liang,et al.  Selective Hydrogenation of Aromatic Chloronitro Compounds , 2007 .

[83]  Luwei Chen,et al.  Ultrasound-assisted polyol method for the preparation of SBA-15-supported ruthenium nanoparticles and the study of their catalytic activity on the partial oxidation of methane. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[84]  Jun Hu,et al.  Synthesis and catalytic activity of a poly(N,N-dialkylcarbodiimide)/palladium nanoparticle composite: a case in the Suzuki coupling reaction using microwave and conventional heating. , 2004, Chemical communications.

[85]  T. Chiles,et al.  Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing , 2005, Nature Methods.

[86]  James E Hutchison,et al.  Toward greener nanosynthesis. , 2007, Chemical reviews.

[87]  E. Bekyarova,et al.  Structure and Physical Properties of Tailor‐Made Ce,Zr‐Doped Carbon Aerogels , 2000 .

[88]  Qin-Hui Zhang,et al.  Reforming of methane and coalbed methane over nanocomposite Ni/ZrO2 catalyst , 2004 .

[89]  Jianxun Liu,et al.  Preparation and catalytic activity of Ni/CNTs nanocomposites using microwave irradiation heating method , 2008 .

[90]  Ayusman Sen,et al.  Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. , 2006, Journal of the American Chemical Society.

[91]  Agustín Martínez,et al.  The key role of support surface tuning during the preparation of catalysts from reverse micellar-synthesized metal nanoparticles , 2007 .

[92]  Youquan Deng,et al.  Polymer-Immobilized Gold Catalysts for the Efficient and Clean Syntheses of Carbamates and Symmetric Ureas by Oxidative Carbonylation of Aniline and Its Derivatives , 2002 .

[93]  Masatake Haruta,et al.  When gold is not noble: catalysis by nanoparticles. , 2003, Chemical record.

[94]  P. Patil,et al.  Non-aqueous sol–gel synthesis, characterization and catalytic properties of metal fluoride supported palladium nanoparticles , 2008 .

[95]  J. Cheon,et al.  Hybrid Nanoparticles for Magnetic Resonance Imaging of Target‐Specific Viral Gene Delivery , 2007 .

[96]  S. Pratsinis,et al.  Flame-made Pd/La2O3/Al2O3 nanoparticles: thermal stability and catalytic behavior in methane combustion , 2005 .

[97]  M. Zawadzki,et al.  Palladium nanoparticles supported on alumina-based oxides as heterogeneous catalysts of the Suzuki–Miyaura reaction , 2008 .

[98]  J. Sueiras,et al.  Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase. , 2004, Chemical communications.

[99]  I. Leith,et al.  Catalytic hydrogenation of carbon monoxide on ruthenium Y-zeolites: Effect of support on activity and selectivity , 1985 .

[100]  Richard M. Lambert,et al.  Propene Epoxidation over K-Promoted Ag/CaCO3 Catalysts: The Effect of Metal Particle Size , 2002 .

[101]  Dunming Zhu,et al.  Nitrilase-catalyzed selective hydrolysis of dinitriles and green access to the cyanocarboxylic acids of pharmaceutical importance , 2007 .

[102]  F. Quignard,et al.  Chitosan: A Natural Polymeric Support of Catalysts for the Synthesis of Fine Chemicals , 2000 .

[103]  R. Walton,et al.  Nanoparticulate Palladium Supported by Covalently Modified Silicas: Synthesis, Characterization, and Application as Catalysts for the Suzuki Coupling of Aryl Halides , 2005 .

[104]  R. Luque,et al.  Aryl alkynylation versus alkyne homocoupling: unprecedented selectivity switch in Cu, phosphine and solvent-free heterogeneous Pd-catalysed couplings , 2005 .

[105]  J. Fierro,et al.  Synthesis of Rh nano-particles by the microemulsion technology: Particle size effect on the CO+H2 reaction , 2004 .

[106]  C. Nájera,et al.  The Sonogashira reaction: a booming methodology in synthetic organic chemistry. , 2007, Chemical reviews.

[107]  G. Hutchings Nanocrystalline gold and gold palladium alloy catalysts for chemical synthesis. , 2008, Chemical communications.

[108]  C. O'connor,et al.  Recent advances in the liquid-phase syntheses of inorganic nanoparticles. , 2004, Chemical reviews.

[109]  T. Hoar,et al.  Transparent Water-in-Oil Dispersions: the Oleopathic Hydro-Micelle , 1943, Nature.

[110]  J. Tsuji,et al.  Palladium Reagents and Catalysts , 1995 .

[111]  J. Clark,et al.  Glycerol transformations on polysaccharide derived mesoporous materials , 2008 .

[112]  G. Martra,et al.  MVS-derived palladium nanoparticles deposited on polydimethylphosphazene as recyclable catalysts for Heck-type reactions: Preparation, structural study, and catalytic activity , 2007 .

[113]  F. Bautista,et al.  Influence of surface support properties on the liquid-phase hydrogenation of propargyl alcohols on AlPO4-supported nickel catalysts , 1991 .

[114]  M. Shelef,et al.  Ammonia Formation in Catalytic Reduction of Nitric Oxide by Molecular Hydrogen. II. Noble Metal Catalysts , 1972 .

[115]  R. Griessen,et al.  Effect of the strong metal-support interaction on hydrogen sorption kinetics of Pd-capped switchable mirrors , 2004 .

[116]  M. S. El-shall,et al.  Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation. , 2005, The journal of physical chemistry. B.

[117]  X. Bao,et al.  Highly active mesostructured silica hosted silver catalysts for CO oxidation using the one-pot synthesis approach. , 2008, Chemical communications.

[118]  C. Che,et al.  Ruthenium nanoparticles supported on hydroxyapatite as an efficient and recyclable catalyst for cis-dihydroxylation and oxidative cleavage of alkenes. , 2004, Angewandte Chemie.

[119]  Masatake Haruta,et al.  Catalysis by Gold Nanoparticles: Epoxidation of Propene , 2004 .

[120]  Tamao Ishida,et al.  Goldkatalyse für eine nachhaltige Chemie , 2007 .

[121]  M. Hoang,et al.  Nanostructured ruthenium on γ-Al2O3 catalysts for the efficient hydrogenation of aromatic compounds , 2004 .

[122]  R. Luque,et al.  Microwave facile preparation of highly active and dispersed SBA-12 supported metal nanoparticles , 2008 .

[123]  Wei Xia,et al.  The two-step chemical vapor deposition of Pd(allyl)Cp as an atom-efficient route to synthesize highly dispersed palladium nanoparticles on carbon nanofibers. , 2005, Chemical communications.

[124]  H. Yin,et al.  Metal Phosphates as a New Class of Supports for Gold Nanocatalysts , 2008 .

[125]  Andreas Menzel,et al.  Stability and Dissolution of Platinum Surfaces in Perchloric Acid , 2006 .

[126]  C. Mirkin The beginning of a small revolution. , 2004, Small.

[127]  R. F. Jardim,et al.  Recoverable rhodium nanoparticles: Synthesis, characterization and catalytic performance in hydrogenation reactions , 2008 .

[128]  R. Neumann,et al.  Direct aerobic epoxidation of alkenes catalyzed by metal nanoparticles stabilized by the H5PV2Mo10O40 polyoxometalate. , 2005, Chemical communications.

[129]  J. Fraissard,et al.  Application of a dihydrogen afterglow to the preparation of zeolite-supported metallic nanoparticles , 2004 .

[130]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[131]  T. Mallouk,et al.  Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. , 2008, Environmental science & technology.

[132]  J. Clark,et al.  Green, transition-metal-free aerobic oxidation of alcohols using a highly durable supported organocatalyst. , 2007, Angewandte Chemie.

[133]  P. Claus,et al.  The influence of real structure of gold catalysts in the partial hydrogenation of acrolein , 2003 .

[134]  M. Beller,et al.  Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano-Fe2O3 in selective oxidations. , 2007, Angewandte Chemie.

[135]  Shaojun Dong,et al.  Metal nanomaterials and carbon nanotubes - synthesis, functionalization and potential applications towards electrochemistry , 2008 .

[136]  A. Corma,et al.  Unique gold chemoselectivity for the aerobic oxidation of allylic alcohols. , 2006, Chemical communications.

[137]  N. Cioffi,et al.  Analytical Characterisation of Pd/ZrO2 Composite Nanoparticles Employed in Heterogeneous Catalysis , 2007 .

[138]  E. Kenawy,et al.  The chemistry and applications of antimicrobial polymers: a state-of-the-art review. , 2007, Biomacromolecules.

[139]  G. Schmid,et al.  Ligand-stabilized metal clusters and colloids: properties and applications , 1996 .

[140]  N. Toshima Recent progress in applications of ligand‐stabilized metal nanoclusters , 2003 .

[141]  G. Hutchings,et al.  Microstructural Development and Catalytic Performance of Au−Pd Nanoparticles on Al2O3 Supports: The Effect of Heat Treatment Temperature and Atmosphere , 2008 .

[142]  V. Pérez-Luna 10 – Surface plasmon resonance , 2005 .

[143]  G. Neri,et al.  Selective liquid phase hydrogenation of citral on Au/Fe2O3 catalysts. , 2002, Chemical communications.

[144]  A. Corma,et al.  Gold supported on a biopolymer (chitosan) catalyzes the regioselective hydroamination of alkynes , 2007 .

[145]  Luwei Chen,et al.  Sonochemically Prepared high Dispersed Ru/TiO2 Mesoporous Catalyst for Partial Oxidation of Methane to Syngas , 2005 .

[146]  A. Fukuoka,et al.  Preferential oxidation of carbon monoxide catalyzed by platinum nanoparticles in mesoporous silica. , 2007, Journal of the American Chemical Society.

[147]  G. Somorjai,et al.  Kinetics and mechanism of ethylene hydrogenation poisoned by CO on silica-supported monodisperse Pt nanoparticles , 2008 .

[148]  J. Clark,et al.  Tunable mesoporous materials optimised for aqueous phase esterifications , 2007 .

[149]  B. Sreedhar,et al.  Preparation of alumina supported copper nanoparticles and their application in the synthesis of 1,2,3-triazoles , 2006 .

[150]  B. Fang,et al.  γ-Ray irradiation as highly efficient approach for synthesis of supported high Pt loading cathode catalyst for application in direct methanol fuel cell , 2008 .

[151]  P. Serp,et al.  Chemical vapor deposition methods for the controlled preparation of supported catalytic materials. , 2002, Chemical reviews.

[152]  Rosaria Ciriminna,et al.  Von Glycerin zu höherwertigen Produkten , 2007 .

[153]  G. Hutchings Catalysis by gold , 2005 .

[154]  C. Evangelisti,et al.  Supported rhodium nanoparticles obtained by Metal Vapour Synthesis as catalysts in the preparation of valuable organic compounds , 2008 .

[155]  He'an Luo,et al.  Synthesis, Characterization of Ag/MCM-41 and the Catalytic Performance for Liquid-phase Oxidation of Cyclohexane , 2006 .

[156]  Louis-S. Bouchard,et al.  NMR Imaging of Catalytic Hydrogenation in Microreactors with the Use of para-Hydrogen , 2008, Science.

[157]  B. Weckhuysen,et al.  Noninvasive in situ visualization of supported catalyst preparations using multinuclear magnetic resonance imaging. , 2005, Journal of the American Chemical Society.

[158]  Zhaolin Liu,et al.  Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications , 2002 .

[159]  Edward F. Holby,et al.  Instability of Supported Platinum Nanoparticles in Low-Temperature Fuel Cells , 2007 .

[160]  Zhiyong Wang,et al.  Diatomite-supported Pd nanoparticles: an efficient catalyst for Heck and Suzuki reactions. , 2006, The Journal of organic chemistry.

[161]  J. Chaouki,et al.  Catalytic storage of hydrogen: Hydrogenation of toluene over a nickel/silica aerogel catalyst in integral flow conditions , 1988 .

[162]  Kangnian Fan,et al.  Ga-Al mixed-oxide-supported gold nanoparticles with enhanced activity for aerobic alcohol oxidation. , 2008, Angewandte Chemie.

[163]  K. Holmberg,et al.  Structure and catalytic properties of nanosized alumina supported platinum and palladium particles synthesized by reaction in microemulsion. , 2003, Journal of colloid and interface science.

[164]  Masatake Haruta,et al.  Gold catalysts: towards sustainable chemistry. , 2007, Angewandte Chemie.

[165]  R. Sagdeev,et al.  Solid-state 27Al MRI and NMR thermometry for catalytic applications with conventional (liquids) MRI instrumentation and techniques. , 2005, Journal of magnetic resonance.

[166]  K. Ebitani,et al.  Highly efficient dehalogenation using hydroxyapatite-supported palladium nanocluster catalyst with molecular hydrogen , 2004 .

[167]  Catherine J. Murphy,et al.  Sustainability as an emerging design criterion in nanoparticle synthesis and applications , 2008 .

[168]  J. Tsuji,et al.  Palladium Reagents and Catalysts: New Perspectives for the 21st Century , 2005 .

[169]  Qinghong Zhang,et al.  Size dependence in solvent-free aerobic oxidation of alcohols catalyzed by zeolite-supported palladium nanoparticles , 2008 .

[170]  J. Marchetti,et al.  Oxidation of glycerol and propanediols in methanol over heterogeneous gold catalysts , 2008 .

[171]  Xinli Zhu,et al.  Characterization of Argon Glow Discharge Plasma Reduced Pt/Al2O3 Catalyst , 2006 .

[172]  Jie Fu,et al.  A simple and green method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles , 2006 .

[173]  Rajiv Trivedi,et al.  An efficient LDH-Pd0-catalyzed three-component coupling of aryl iodides, alkynes and alkenes , 2007 .

[174]  A. Corma,et al.  A collaborative effect between gold and a support induces the selective oxidation of alcohols. , 2005, Angewandte Chemie.

[175]  H. Volpp,et al.  Synthesis of nanostructured lean-NOx catalysts by direct laser deposition of monometallic Pt-, Rh- and bimetallic PtRh-nanoparticles on SiO2 support , 2008 .

[176]  D. Astruc,et al.  Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse , 2005 .

[177]  P. A. Jacobs,et al.  Chain limitation of Fischer–Tropsch products in zeolites , 1979 .

[178]  Tetsu Tatsuma,et al.  Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. , 2004, Chemical communications.

[179]  Ping Liu,et al.  Water–gas shift activity of Au and Cu nanoparticles supported on molybdenum oxides , 2008 .

[180]  Weijiang Zhou,et al.  Methanol oxidation activities of Pt nanoparticles supported on microporous carbon with and without a graphitic shell , 2006 .

[181]  Hydrodechlorination of Chlorinated Biphenyls in Supercritical CO2 Catalyzed by Polymer-Stabilized Palladium Nanoparticles , 2007 .

[182]  Changpeng Liu,et al.  Preparation of Pd/C catalyst for formic acid oxidation using a novel colloid method , 2008 .

[183]  Can Erkey,et al.  Investigation of the supercritical deposition of platinum nanoparticles into carbon aerogels , 2005 .

[184]  Selim Senkan,et al.  High-throughput metal nanoparticle catalysis by pulsed laser ablation , 2006 .

[185]  Darrick J. Williams,et al.  Facile Synthesis of Polyaniline-Supported Pd Nanoparticles and Their Catalytic Properties toward Selective Hydrogenation of Alkynes and Cinnamaldehyde , 2008 .

[186]  B. Sreedhar,et al.  Cellulose supported palladium(0) catalyst for Heck and Sonogashira coupling reactions , 2006 .

[187]  Éva D. Molnár,et al.  Infrared spectroscopy studies of cyclohexene hydrogenation and dehydrogenation catalyzed by platinum nanoparticles supported on mesoporous silicate (SBA-15). Part 1: The role of particle size of Pt nanocrystals supported on SBA-15 silicate , 2005 .

[188]  H. Freund,et al.  Hydrogenation on metal surfaces: why are nanoparticles more active than single crystals? , 2003, Angewandte Chemie.

[189]  Gianmario Martra,et al.  Metal sols as a useful tool for heterogeneous gold catalyst preparation: reinvestigation of a liquid phase oxidation , 2000 .

[190]  Chao Wang,et al.  Multi-wall carbon nanotubes supported ruthenium for glucose hydrogenation to sorbitol , 2007 .

[191]  S. Bhargava,et al.  Alumina supported copper nanoparticles for aziridination and cyclopropanation reactions , 2007 .

[192]  Masatake Haruta,et al.  Catalysis of Gold Nanoparticles Deposited on Metal Oxides , 2002 .

[193]  Marc R. Knecht,et al.  Hydrophobic dendrimers as templates for au nanoparticles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[194]  I. Ivanov,et al.  Gold based catalysts on ceria and ceria-alumina for WGS reaction (WGS Gold catalysts) , 2007 .

[195]  L. Rossi,et al.  Superparamagnetic nanoparticle-supported palladium: a highly stable magnetically recoverable and reusable catalyst for hydrogenation reactions , 2007 .

[196]  Ping Liu,et al.  Water gas shift reaction on Cu and Au nanoparticles supported on CeO2(111) and ZnO(0001): intrinsic activity and importance of support interactions. , 2007, Angewandte Chemie.

[197]  Jinda Fan,et al.  Superparamagnetic nanoparticle-supported catalysis of Suzuki cross-coupling reactions. , 2005, Organic letters.

[198]  R. Backov,et al.  Generation of Palladium Nanoparticles within Macrocellular Polymeric Supports: Application to Heterogeneous Catalysis of the Suzuki–Miyaura Coupling Reaction , 2005 .

[199]  J. Guzman,et al.  Influence of the support during homocoupling of phenylboronic acid catalyzed by supported gold , 2008 .

[200]  Yoichi M. A. Yamada,et al.  A nanoplatinum catalyst for aerobic oxidation of alcohols in water. , 2007, Angewandte Chemie.

[201]  T. Lim,et al.  Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica , 2006 .

[202]  S. Rojas,et al.  Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis , 2004 .

[203]  Saurabh Basu,et al.  Chemical Locomotives Based on Polymer Supported Catalytic Nanoparticles , 2008 .

[204]  L. Kiwi-Minsker,et al.  Monodispersed Pd Nanoparticles for Acetylene Selective Hydrogenation: Particle Size and Support Effects , 2008 .

[205]  Richard G Compton,et al.  Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. , 2006, Small.

[206]  Chandrashekhar V. Rode,et al.  Tailoring of activity and selectivity using bimetallic catalyst in hydrogenation of succinic acid , 2002 .

[207]  Wen-Yueh Yu,et al.  Pt/titania-nanotube: A potential catalyst for CO2 adsorption and hydrogenation , 2008 .

[208]  Xueping Gao,et al.  Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. , 2008, Angewandte Chemie.

[209]  M. Murata,et al.  Supramolecular catalysts by encapsulating palladium complexes within dendrimers. , 2004, Journal of the American Chemical Society.

[210]  Wei Wei,et al.  Asymmetric hydrogenation of furfuryl alcohol catalyzed by a biopolymer–metal complex, silica-supported alginic acid–amino acid–Pt complex , 2004 .

[211]  E. Sulman,et al.  Nanostructured catalysts for the synthesis of vitamin intermediate products , 2006 .

[212]  Bernard Delmon,et al.  Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 , 1993 .

[213]  W. Stark,et al.  Flame-made ceria nanoparticles , 2002 .

[214]  Wei-xian Zhang,et al.  Nanoscale Iron Particles for Environmental Remediation: An Overview , 2003 .

[215]  M. Rossi,et al.  Gas phase oxidation of alcohols to aldehydes or ketones catalysed by supported gold. , 2003, Chemical communications.

[216]  Peter Magnusson,et al.  13C imaging—a new diagnostic platform , 2005, European Radiology.

[217]  J. Ying,et al.  Calcium‐Doped Organosilicate Nanoparticles as Gene Delivery Vehicles for Bone Cells , 2007 .

[218]  H. Hofmeister,et al.  Structural characteristics of oxide nanosphere supported metal nanoparticles , 2007 .

[219]  D. Cole-Hamilton,et al.  Homogeneous Catalysis--New Approaches to Catalyst Separation, Recovery, and Recycling , 2003, Science.

[220]  S. Duckett,et al.  Applications of the parahydrogen phenomenon: A chemical perspective , 1999 .

[221]  Arno Behr,et al.  Improved utilisation of renewable resources: New important derivatives of glycerol , 2008 .

[222]  Ayusman Sen,et al.  Selective Heterogeneous Catalytic Hydrogenation by Recyclable Poly(allylamine) Gel-Supported Palladium(0) Nanoparticles , 2007 .

[223]  Y. Chen-Yang,et al.  Preparation and catalytic activity of Pt/C materials via microwave irradiation , 2007 .

[224]  R. G. Freeman,et al.  SERS as a Foundation for Nanoscale, Optically Detected Biological Labels , 2007 .

[225]  T. Akita,et al.  Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols. , 2008, Chemistry.

[226]  J. Clark,et al.  Palladium nanoparticles on polysaccharide-derived mesoporous materials and their catalytic performance in C–C coupling reactions , 2008 .

[227]  Yong Wang,et al.  Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes , 2004 .

[228]  N. Cioffi,et al.  Pd supported on tetragonal zirconia: Electrosynthesis, characterization and catalytic activity toward CO oxidation and CH4 combustion , 2005 .

[229]  Yeongri Jung,et al.  Palladium nanoparticles captured onto spherical silica particles using a urea cross-linked imidazolium molecular band. , 2007, Chemical communications.

[230]  H. Zhai,et al.  Catalytic properties of silica/silver nanocomposites. , 2006, Journal of nanoscience and nanotechnology.

[231]  G. Somorjai,et al.  Catalysis and nanoscience. , 2003, Chemical communications.

[232]  Zhong‐Yong Yuan,et al.  Gold catalysts supported on mesoporous titania for low-temperature water–gas shift reaction , 2004 .

[233]  Richard G. Compton,et al.  Sonoelectrochemical processes: A review , 1997 .

[234]  R. Serimaa,et al.  Novel Approaches to Metallization of Cellulose by Reduction of Cellulose-Incorporated Copper and Nickel Ions , 2007 .

[235]  J. M. Campelo,et al.  Catalytic properties of the silicoaluminophosphates SAPO-5 and SAPO-11 in n-octane and isooctane hydroconversion , 1995 .

[236]  Richard M Crooks,et al.  Dendrimer-encapsulated Pd nanoparticles as aqueous, room-temperature catalysts for the Stille reaction. , 2005, Journal of the American Chemical Society.

[237]  Y. Geng,et al.  Asymmetric hydrogenation of ketones catalyzed by zeolite‐supported gelatin–Fe complex , 2001 .

[238]  H. Arakawa,et al.  Ethylene hydroformylation and carbon monoxide hydrogenation over modified and unmodified silica supported rhodium catalysts , 2000 .

[239]  P. Englebienne,et al.  Surface plasmon resonance: principles, methods and applications in biomedical sciences , 2003 .

[240]  J. Sueiras,et al.  Effects of morphology and cesium promotion over silver nanoparticles catalysts in the styrene epoxidation , 2007 .

[241]  G. Hutchings,et al.  Low-pressure methanol/ dimethylether synthesis from syngas on gold-based catalysts , 2007 .

[242]  Linfeng Wu,et al.  Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles. , 2006, Chemosphere.

[243]  M. Aramendía,et al.  Hydrodechlorination of 3-chloropyridine and chlorobenzene in methanol solution over alkali-modified zirconia-supported palladium catalysts , 2005 .

[244]  R. Luque,et al.  Preparation of highly active and dispersed platinum nanoparticles on mesoporous Al-MCM-48 and their activity in the hydroisomerisation of n-octane. , 2008, Chemistry.

[245]  É. Boisselier,et al.  Gold nanoparticles synthesis and stabilization via new "clicked" polyethyleneglycol dendrimers. , 2008, Chemical communications.

[246]  M. Centeno,et al.  Gold supported CeO2/Al2O3 catalysts for CO oxidation: influence of the ceria phase , 2005 .

[247]  R. Richards,et al.  Aerobic oxidation of cyclohexane by gold nanoparticles immobilized upon mesoporous silica , 2005 .

[248]  R. Luque,et al.  Efficient microwave oxidation of alcohols using low-loaded supported metallic iron nanoparticles. , 2008, ChemSusChem.

[249]  M. Dresselhaus,et al.  Selective and Efficient Impregnation of Metal Nanoparticles on Cup-Stacked-Type Carbon Nanofibers , 2003 .

[250]  X. Ni,et al.  Synthesis of Cu/SiO2 composite films via gamma-irradiation route and their optical absorption properties , 2008 .

[251]  A. Corma,et al.  Bridging the gap between homogeneous and heterogeneous gold catalysis: supported gold nanoparticles as heterogeneous catalysts for the benzannulation reaction , 2007 .

[252]  Feng-sheng Li,et al.  Effects of Nanometer Ni, Cu, Al and NiCu Powders on the Thermal Decomposition of Ammonium Perchlorate , 2004 .

[253]  Wei Chen,et al.  Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. , 2007, Nature materials.

[254]  J. Čejka,et al.  The use of palladium nanoparticles supported with MCM-41 and basic (Al)MCM-41 mesoporous sieves in microwave-assisted Heck reaction , 2008 .

[255]  Yoshio Kobayashi,et al.  Effect of ultrasonic irradiation on carbon-supported Pt-Ru nanoparticles prepared at high metal concentration , 2007 .

[256]  B. Sreedhar,et al.  Layered Double Hydroxide Supported Nanoplatinum and Nanopalladium Catalyzed Allylation of Aldehydes: A Mechanistic Study , 2005 .

[257]  M. Haruta,et al.  Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2 , 1998 .

[258]  Robert B. Grant,et al.  A single crystal study of the silver-catalysed selective oxidation and total oxidation of ethylene , 1985 .

[259]  Di Wang,et al.  Bridging the pressure and materials gap: in-depth characterisation and reaction studies of silver-catalysed acrolein hydrogenation , 2005 .

[260]  Jessica D. Schiffman,et al.  Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles. , 2008, Biomacromolecules.

[261]  F. Bautista AIPO4-supported nickel catalysts IX. Liquid-phase selective hydrogenation of propargyl alcohols , 1990 .

[262]  Guifeng Li,et al.  Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions. , 2005, Chemical communications.

[263]  F. Porta,et al.  Selective liquid phase oxidation using gold catalysts , 2000 .

[264]  R. Raval,et al.  Nitric oxide reduction by Cu nanoclusters supported on thin Al2O3 films , 2004 .

[265]  Jie Ding,et al.  Platinum and platinum-ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions , 2005 .

[266]  A. J. Hunt,et al.  Delicious not siliceous: expanded carbohydrates as renewable separation media for column chromatography. , 2005, Chemical communications.

[267]  Peter Claus,et al.  Identification of active sites in gold-catalyzed hydrogenation of acrolein. , 2003, Journal of the American Chemical Society.

[268]  Kyung Yeon Kang,et al.  Rhodium and iridium nanoparticles entrapped in aluminum oxyhydroxide nanofibers: Catalysts for hydrogenations of arenes and ketones at room temperature with hydrogen balloon , 2007 .

[269]  G. Lu,et al.  Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. , 2008, Chemical Society reviews.

[270]  A. Pines,et al.  Para-hydrogen-enhanced hyperpolarized gas-phase magnetic resonance imaging. , 2007, Angewandte Chemie.

[271]  Jijun Zou,et al.  Reduction of supported noble-metal ions using glow discharge plasma. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[272]  M. Flytzani-Stephanopoulos,et al.  Gold-ceria catalysts for low-temperature water-gas shift reaction , 2003 .

[273]  Dali Tan,et al.  One-pot Encapsulation of Pt Nanoparticles into the Mesochannels of SBA-15 and their Catalytic Dehydrogenation of Methylcyclohexane , 2007 .

[274]  Su Seong Lee,et al.  Colloidal cobalt nanoparticles: a highly active and reusable Pauson-Khand catalyst. , 2001, Chemical communications.

[275]  R. Neumann,et al.  Direct Aerobic Oxidation of Secondary Alcohols Catalysed by Pt(0) Nanoparticles Stabilized by PV2Mo10O405− Polyoxmetalate , 2008 .

[276]  J. Ying,et al.  Palladium nanoclusters supported on propylurea-modified siliceous mesocellular foam for coupling and hydrogenation reactions. , 2008, Chemistry.

[277]  T. Akita,et al.  Vapor-Phase Epoxidation of Propene Using H2 and O2 over Au/Ti–MCM-48 , 2002 .

[278]  A. Miyazaki,et al.  Preparation of Ru Nanoparticles Supported on γ-Al2O3 and Its Novel Catalytic Activity for Ammonia Synthesis , 2001 .

[279]  Peter J. Miedziak,et al.  Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. , 2008, Physical chemistry chemical physics : PCCP.

[280]  N. Perkas,et al.  Deposition of Gold Particles on Mesoporous Catalyst Supports by Sonochemical Method, and their Catalytic Performance for CO Oxidation , 2008 .

[281]  Hyun-Seok Kim,et al.  Hydrogen storage in ni nanoparticle-dispersed multiwalled carbon nanotubes. , 2005, The journal of physical chemistry. B.

[282]  Dong Yang,et al.  Synthesis of Platinum Nanoparticles Supported on Poly(acrylic acid) Grafted MWNTs and Their Hydrogenation of Citral , 2008 .

[283]  Monalisa,et al.  Supported Ultra Small Palladium on Magnetic Nanoparticles Used as Catalysts for Suzuki Cross-Coupling and Heck Reactions , 2007 .

[284]  M. S. El-shall,et al.  Nanocatalysis on Supported Oxides for CO Oxidation , 2008 .

[285]  Paul T Anastas,et al.  Origins, current status, and future challenges of green chemistry. , 2002, Accounts of chemical research.

[286]  M. Terrones Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications , 2004 .

[287]  C. Murphy,et al.  Tunable one-dimensional silver-silica nanopeapod architectures. , 2006, The journal of physical chemistry. B.

[288]  Ana M. Benito,et al.  Preparation of palladium loaded carbon nanotubes and activated carbons for hydrogen sorption , 2007 .

[289]  M. Bettahar,et al.  Study of nickel catalysts supported on silica of low surface area and prepared by reduction of nickel acetate in aqueous hydrazine , 2004 .

[290]  A. Corma,et al.  A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. , 2007, Angewandte Chemie.

[291]  J. Clark,et al.  Highly efficient aerobic oxidation of alcohols using a recoverable catalyst: the role of mesoporous channels of SBA-15 in stabilizing palladium nanoparticles. , 2006, Angewandte Chemie.

[292]  I. Dékány,et al.  Calorimetric study of sorption of hydrogen by carbon-supported palladium , 1998 .

[293]  M. Aramendía,et al.  Effect of the redox treatment of Pt/TiO2 system on its photocatalytic behaviour in the gas phase selective photooxidation of propan-2-ol , 2007 .

[294]  J. M. Campelo,et al.  Pt/SAPO-5 and Pt/SAPO-11 as catalysts for the hydroisomerization and hydrocracking of n-octane , 1995 .

[295]  Xiansong Liu,et al.  Controlling the agglomeration of anisotropic Ru nanoparticles by the microwave-polyol process. , 2005, Journal of colloid and interface science.