Tracking and removing modulated sinusoidal components: A solution based on the kurtosis and the Extended

a b s t r a c t This work describes an automatic method for removing modulated sinusoidal compo- nents in signals. The method consists in using the Optimized Spectral Kurtosis for initializing Series of Extended Kalman Filters. The first section is an introduction to vibration applications with Kalman Filters and modulated sinusoids. The detection process with OSK is described in the second section. The third section concerns the tracking algorithm with SEKF for amplitude and frequency modulated sinusoidal components. The last section deals with the complete process illustrated with an experimental application on a rotating machine.

[1]  Kesheng Wang,et al.  Application of computed order tracking, Vold–Kalman filtering and EMD in rotating machine vibration , 2011 .

[2]  Y.-F. Lin,et al.  Further exploration of Vold–Kalman-filtering order tracking with shaft-speed information—II: Engineering applications , 2006 .

[3]  Chris K. Mechefske,et al.  Gearbox vibration monitoring using extended Kalman filters and hypothesis tests , 2009 .

[4]  Guang Meng,et al.  Vibration control of piezoelectric smart structures based on system identification technique: Numerical simulation and experimental study , 2006 .

[5]  Chih-Kao Ma,et al.  An inverse method for the estimation of input forces acting on non-linear structural systems , 2004 .

[6]  Fu-Cheng Su,et al.  Fault diagnosis of rotating machinery using an intelligent order tracking system , 2005 .

[7]  Y.-F. Lin,et al.  Further exploration of Vold–Kalman-filtering order tracking with shaft-speed information—I: Theoretical part, numerical implementation and parameter investigations , 2006 .

[8]  Min-Chun Pan,et al.  Investigation on improved Gabor order tracking technique and its applications , 2006 .

[9]  Yimin Zhan,et al.  Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov–Smirnov test statistic. Part II: Experiment and application , 2007 .

[10]  Sergio M. Savaresi,et al.  On the parametrization and design of an extended Kalman filter frequency tracker , 2000, IEEE Trans. Autom. Control..

[11]  Kesheng Wang,et al.  The combined use of order tracking techniques for enhanced Fourier analysis of order components , 2011 .

[12]  Robert R. Bitmead,et al.  Conditions for stability of the extended Kalman filter and their application to the frequency tracking problem , 1995, Math. Control. Signals Syst..

[13]  Zhuo Wang,et al.  Three-step method for stiffness identification of inter-story shearing structures under ambient excitation , 2009 .

[14]  Kok Kiong Tan,et al.  High efficient crossing-order decoupling in Vold-Kalman filtering order tracking based on independent component analysis , 2010 .

[15]  J. Blough DEVELOPMENT AND ANALYSIS OF TIME VARIANT DISCRETE FOURIER TRANSFORM ORDER TRACKING , 2003 .

[16]  Xuda Qin,et al.  Fault identification and classification of rolling element bearing based on time-varying autoregressive spectrum , 2008 .

[17]  H. Hajimolahoseini,et al.  Improvement of Extended Kalman Filter frequency tracker for nonstationary harmonic signals , 2008, 2008 International Symposium on Telecommunications.

[18]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[19]  S. Seibold,et al.  a Time Domain Method for the Localization of Cracks in Rotors , 1996 .

[20]  Yimin Zhan,et al.  Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov–Smirnov test statistic—Part I: Compromised autoregressive modeling with the aid of hypothesis tests and simulation analysis , 2007 .

[21]  Yimin Zhan,et al.  Adaptive autoregressive modeling of non-stationary vibration signals under distinct gear states. Part 1: modeling , 2005 .

[22]  Barbara F. La Scala,et al.  An extended Kalman filter frequency tracker for high-noise environments , 1996, IEEE Trans. Signal Process..

[23]  I. T. Al-Zaharnah,et al.  Suppressing vibrations of machining processes in both feed and radial directions using an optimal control strategy: The case of interrupted cutting , 2006 .

[24]  Min-Chun Pan,et al.  Adaptive Vold Kalman filtering order tracking , 2007 .

[25]  J. Leuridan,et al.  High Resolution Order Tracking at Extreme Slew Rates Using Kalman Tracking Filters , 1993 .

[26]  Toshio Yoshimura,et al.  An Active Suspension Model For Rail/Vehicle Systems With Preview and Stochastic Optimal Control , 1993 .

[27]  Javad Marzbanrad,et al.  Stochastic optimal preview control of a vehicle suspension , 2004 .

[28]  Barbara F. La Scala,et al.  Design of an extended Kalman filter frequency tracker , 1996, IEEE Trans. Signal Process..

[29]  Kok Kiong Tan,et al.  Order-crossing removal in Gabor order tracking by independent component analysis , 2009 .

[30]  P. S. Heyns,et al.  An empirical re-sampling method on intrinsic mode function to deal with speed variation in machine fault diagnostics , 2011, Appl. Soft Comput..

[31]  T. W. Parks,et al.  Digital Filter Design , 1987 .

[32]  Min-Chun Pan,et al.  Extended Angular-Velocity Vold-Kalman Order Tracking , 2010 .

[33]  Håvard Vold,et al.  Multi axle order tracking with the Vold-Kalman tracking filter , 1997 .

[34]  Dong-Cherng Lin,et al.  Estimation of forces generated by a machine mounted upon isolators under operating conditions , 1999 .

[35]  Prasenjit Mohanty,et al.  Operational modal analysis in the presence of harmonic excitation , 2004 .

[36]  Gaël Chevallier,et al.  Harmonic component detection: Optimized Spectral Kurtosis for operational modal analysis , 2012 .

[37]  Min-Chun Pan,et al.  Improvement on Gabor order tracking and objective comparison with Vold–Kalman filtering order tracking , 2007 .