Optimization of a proton exchange membrane fuel cell membrane electrode assembly

A computational framework for fuel cell analysis and optimization is presented as an innovative alternative to the time consuming trial-and-error process currently used for fuel cell design. The framework is based on a two-dimensional through-the-channel isothermal, isobaric and single phase membrane electrode assembly (MEA) model. The model input parameters are the manufacturing parameters used to build the MEA: platinum loading, platinum to carbon ratio, electrolyte content and gas diffusion layer porosity. The governing equations of the fuel cell model are solved using Netwon’s algorithm and an adaptive finite element method in order to achieve near quadratic convergence and a mesh independent solution respectively. The analysis module is used to solve the optimization problem of finding the optimal MEA composition for maximizing performance. To solve the optimization problem a gradient-based optimization algorithm is used in conjunction with analytical sensitivities. By using a gradient-based method and analytical sensitivities, the framework presented is capable of solving a complete MEA optimization problem with state-of-the-art electrode models in approximately 30 min, making it a viable alternative for solving large-scale fuel cell problems.

[1]  Michael S. Eldred,et al.  DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 3.0 Reference Manual , 2001 .

[2]  K. Karan,et al.  An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters , 2005 .

[3]  J. Martins A coupled-adjoint method for high-fidelity aero-structural optimization , 2002 .

[4]  A. A. Kornyshev,et al.  Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells , 1998 .

[5]  Joaquim R. R. A. Martins,et al.  AN AUTOMATED METHOD FOR SENSITIVITY ANALYSIS USING COMPLEX VARIABLES , 2000 .

[6]  Lin Wang,et al.  Performance studies of PEM fuel cells with interdigitated flow fields , 2004 .

[7]  A. Parthasarathy,et al.  Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion® Interface—A Microelectrode Investigation , 1992 .

[8]  Michael Eikerling,et al.  Structure and performance of different types of agglomerates in cathode catalyst layers of PEM fuel cells , 2004 .

[9]  Chin-Hsiang Cheng,et al.  Design for geometric parameters of PEM fuel cell by integrating computational fluid dynamics code with optimization method , 2007 .

[10]  Afzal Suleman,et al.  Multi-variable optimization of PEMFC cathodes using an agglomerate model , 2007 .

[11]  Peter Lund,et al.  Effect of ambient conditions on performance and current distribution of a polymer electrolyte membrane fuel cell , 2003 .

[12]  K. M. Chittajallu,et al.  Optimization of the cathode geometry in polymer electrolyte membrane (PEM) fuel cells , 2004 .

[13]  Ned Djilali,et al.  CFD-based modelling of proton exchange membrane fuel cells , 2005 .

[14]  Ned Djilali,et al.  Systematic parameter estimation for PEM fuel cell models , 2005 .

[15]  Christopher Hebling,et al.  Characterising PEM Fuel Cell Performance Using a Current Distribution Measurement in Comparison with a CFD Model , 2004 .

[16]  M. Verbrugge,et al.  Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte , 1991 .

[17]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[18]  Kunal Karan Assessment of transport-limited catalyst utilization for engineering of ultra-low Pt loading polymer electrolyte fuel cell anode , 2007 .

[19]  Timothy A. Davis,et al.  A column pre-ordering strategy for the unsymmetric-pattern multifrontal method , 2004, TOMS.

[20]  Afzal Suleman,et al.  Multi-objective optimization of a polymer electrolyte fuel cell membrane electrode assembly , 2008 .

[21]  P. Pickup,et al.  Ionic Conductivity of PEMFC Electrodes Effect of Nafion Loading , 2003 .

[22]  Trung Van Nguyen,et al.  Effect of electrode configuration and electronic conductivity on current density distribution measurements in PEM fuel cells , 2004 .

[23]  S. Litster,et al.  PEM fuel cell electrodes , 2004 .

[24]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[25]  A. Suleman,et al.  Numerical optimization of proton exchange membrane fuel cell cathodes , 2007 .

[26]  Hongtan Liu,et al.  A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model , 2001 .

[27]  Michael Eikerling,et al.  Water Management in Cathode Catalyst Layers of PEM Fuel Cells A Structure-Based Model , 2006 .

[28]  K. M. Chittajallu,et al.  Design and optimization of polymer electrolyte membrane (PEM) fuel cells , 2004 .

[29]  D. Wilkinson,et al.  In-situ methods for the determination of current distributions in PEM fuel cells , 1998 .

[30]  D. Cacuci,et al.  SENSITIVITY and UNCERTAINTY ANALYSIS , 2003 .

[31]  Marc Secanell Gallart,et al.  Computational modeling and optimization of proton exchange membrane fuel cells , 2007 .

[32]  Titichai Navessin,et al.  Numerical study of PEM fuel cell cathode with non-uniform catalyst layer , 2004 .

[33]  G. Sasikumar,et al.  Optimum Nafion content in PEM fuel cell electrodes , 2004 .

[34]  Nigel P. Brandon,et al.  Measurement of the current distribution along a single flow channel of a solid polymer fuel cell , 2001 .

[35]  Datong Song,et al.  Functionally Graded Cathode Catalyst Layers for Polymer Electrolyte Fuel Cells II. Experimental Study of the Effect of Nafion Distribution , 2005 .

[36]  A. Parthasarathy,et al.  Pressure Dependence of the Oxygen Reduction Reaction at the Platinum Microelectrode/Nafion Interface: Electrode Kinetics and Mass Transport , 1992 .

[37]  E. Passalacqua,et al.  Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC , 1999 .

[38]  Ned Djilali,et al.  Three-dimensional computational analysis of transport phenomena in a PEM fuel cell—a parametric study , 2003 .

[39]  A. Mawardi,et al.  Optimization of the Operating Parameters of a Proton Exchange Membrane Fuel Cell for Maximum Power Density , 2005 .

[40]  Nathan P. Siegel,et al.  Single domain PEMFC model based on agglomerate catalyst geometry , 2003 .

[41]  Michael Eikerling,et al.  Functionally graded cathode catalyst layers for polymer electrolyte fuel cells - I. Theoretical modeling , 2004 .

[42]  Afzal Suleman,et al.  Optimal Design of Ultralow-Platinum PEMFC Anode Electrodes , 2008 .

[43]  T. Springer,et al.  Dual-Pathway Kinetic Equation for the Hydrogen Oxidation Reaction on Pt Electrodes , 2006 .

[44]  Sophia Lefantzi,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. , 2011 .

[45]  Hubert A. Gasteiger,et al.  Determination of Catalyst Unique Parameters for the Oxygen Reduction Reaction in a PEMFC , 2006 .

[46]  J. Hinatsu,et al.  Water Uptake of Perfluorosulfonic Acid Membranes from Liquid Water and Water Vapor , 1994 .

[47]  Karren L. More,et al.  Porosimetry of MEAs Made by “Thin Film Decal” Method and Its Effect on Performance of PEFCs , 2004 .

[48]  Edward L Cussler,et al.  Diffusion: Mass Transfer in Fluid Systems , 1984 .

[49]  G. Lindbergh,et al.  Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode , 2003 .

[50]  Anthony Kucernak,et al.  Electrocatalysis under Conditions of High Mass Transport Rate: Oxygen Reduction on Single Submicrometer-Sized Pt Particles Supported on Carbon , 2004 .

[51]  Lin Wang,et al.  A parametric study of PEM fuel cell performances , 2003 .

[52]  T. Zawodzinski,et al.  Further refinements in the segmented cell approach to diagnosing performance in polymer electrolyte fuel cells , 2003 .

[53]  Trung Van Nguyen,et al.  Current distribution in PEM fuel cells. Part 2: Air operation and temperature effect , 2005 .

[54]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[55]  Trung Van Nguyen,et al.  Current distribution in PEM fuel cells. Part 1: Oxygen and fuel flow rate effects , 2005 .

[56]  Ned Djilali,et al.  THREE-DIMENSIONAL COMPUTATIONAL ANALYSIS OF TRANSPORT PHENOMENA IN A PEM FUEL CELL , 2002 .

[57]  Sadik Kakac,et al.  Two‐dimensional model for proton exchange membrane fuel cells , 1998 .

[58]  Titichai Navessin,et al.  A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells , 2005 .

[59]  Mica Grujicic,et al.  Cathode and interdigitated air distributor geometry optimization in polymer electrolyte membrane (PEM) fuel cells , 2004 .

[60]  Mark W. Verbrugge,et al.  A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell , 1992 .

[61]  G. Squadrito,et al.  Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance , 2001 .

[62]  Datong Song,et al.  Numerical optimization study of the catalyst layer of PEM fuel cell cathode , 2004 .

[63]  Sanjeev Mukerjee,et al.  Effects of Nafion impregnation on performances of PEMFC electrodes , 1998 .

[64]  A. A. Kulikovsky,et al.  Modeling the Cathode Compartment of Polymer Electrolyte Fuel Cells: Dead and Active Reaction Zones , 1999 .