A Theory of Primitive Objects - Scond-Order Systems

We describe a second-order calculus of objects. The calculus supports object subsumption, method override, and the type Self. It is constructed as an extension of System F with subtyping, recursion, and first-order object types.

[1]  Giorgio Ghelli,et al.  Coherence of Subsumption, Minimum Typing and Type-Checking in F<= , 1992, Math. Struct. Comput. Sci..

[2]  Luca Cardelli,et al.  Extensible records in a pure calculus of subtyping , 1994 .

[3]  Gordon D. Plotkin,et al.  An Ideal Model for Recursive Polymorphic Types , 1986, Inf. Control..

[4]  Corrado Böhm,et al.  Automatic Synthesis of Typed Lambda-Programs on Term Algebras , 1985, Theor. Comput. Sci..

[5]  John C. Mitchell,et al.  A lambda calculus of objects and method specialization , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[6]  簡聰富,et al.  物件導向軟體之架構(Object-Oriented Software Construction)探討 , 1989 .

[7]  Luca Cardelli,et al.  An Extension of System F with Subtyping , 1994, Inf. Comput..

[8]  Luca Cardelli,et al.  On understanding types, data abstraction, and polymorphism , 1985, CSUR.

[9]  Martín Abadi,et al.  A Theory of Primitive Objects , 1996 .

[10]  Kim B. Bruce A paradigmatic object-oriented programming language: Design, static typing and semantics , 1994, Journal of Functional Programming.

[11]  Martín Abadi,et al.  A Theory of Primitive Objects - Untyped and First-Order Systems , 1994, TACS.

[12]  Martín Abadi,et al.  A semantics of object types , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[13]  J. Girard,et al.  Proofs and types , 1989 .